Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4197, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862893

RESUMO

Riboswitches are RNA sensors that affect post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch class is the most widespread riboswitch occurring in all three domains of life. Even though it controls different genes involved in the synthesis or transport of thiamine and its phosphorylated derivatives in bacteria, archaea, fungi, and plants, the TPP aptamer has a conserved structure. In this study, we aimed at understanding differences in the structural dynamics of TPP riboswitches from Escherichia coli and Arabidopsis thaliana, based on their crystallographic structures (TPPswec and TPPswat, respectively) and dynamics in aqueous solution, both in apo and holo states. A combination of Molecular Dynamics Simulations and Network Analysis empowered to find out slight differences in the dynamical behavior of TPP riboswitches, although relevant for their dynamics in bacteria and plants species. Our results suggest that distinct interactions in the microenvironment surrounding nucleotide U36 of TPPswec (and U35 in TPPswat) are related to different responses to TPP. The network analysis showed that minor structural differences in the aptamer enable enhanced intramolecular communication in the presence of TPP in TPPswec, but not in TPPswat. TPP riboswitches of plants present subtler and slower regulation mechanisms than bacteria do.


Assuntos
Arabidopsis/química , Escherichia coli/química , Simulação de Dinâmica Molecular , RNA Bacteriano/química , RNA de Plantas/química , Riboswitch , Tiamina Pirofosfatase , Arabidopsis/genética , Escherichia coli/genética , RNA Bacteriano/genética , RNA de Plantas/genética
2.
Proc Natl Acad Sci U S A ; 112(5): 1601-6, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605885

RESUMO

How G protein-coupled receptor conformational dynamics control G protein coupling to trigger signaling is a key but still open question. We addressed this question with a model system composed of the purified ghrelin receptor assembled into lipid discs. Combining receptor labeling through genetic incorporation of unnatural amino acids, lanthanide resonance energy transfer, and normal mode analyses, we directly demonstrate the occurrence of two distinct receptor:Gq assemblies with different geometries whose relative populations parallel the activation state of the receptor. The first of these assemblies is a preassembled complex with the receptor in its basal conformation. This complex is specific of Gq and is not observed with Gi. The second one is an active assembly in which the receptor in its active conformation triggers G protein activation. The active complex is present even in the absence of agonist, in a direct relationship with the high constitutive activity of the ghrelin receptor. These data provide direct evidence of a mechanism for ghrelin receptor-mediated Gq signaling in which transition of the receptor from an inactive to an active conformation is accompanied by a rearrangement of a preassembled receptor:G protein complex, ultimately leading to G protein activation and signaling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Receptores de Grelina/química , Transferência de Energia , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...