RESUMO
AIMS: This work aims to characterize the microbial diversity of the encrusting sponge Cliona varians, a pore-forming and coral reef bioeroding marine sponge of emerging spread related to ocean acidification. METHODS AND RESULTS: We analysed the microbiome composition by 16S V4 amplicon next-generation sequencing in a community of the bioeroding coral reef encrusting/excavating marine sponge Cliona varians thriving at the Southern Caribbean Sea. About 87.21% and 6.76% of the sequences retrieved were assigned to the domain Bacteria and Archaea. The most predominant operational taxonomic units were classified as members of the order Rhizobiales and family Nitrosopumilaceae, representing members of not yet characterized genera. Features found strictly conserved in the strain/genomic representatives reported in those microbial taxa are nitrogen fixation and transformation. CONCLUSION: Our results suggest, in accordance with recent results, that these microbiome members and associated functions could be contributing to the biological fitness of the sponge to be able to colonize and bioerode in environments with low access and scarce availability of nitrogen sources. SIGNIFICANCE AND IMPACT OF STUDY: Coral reefs bioresources such as sponge holobionts are intriguing and complex ecosystem units. This study contributes to the knowledge of how C. varians microbiota is composed or shaped, which is crucial to understand its ecological functions.
Assuntos
Microbiota , Poríferos , Animais , Archaea , Região do Caribe , Concentração de Íons de Hidrogênio , Microbiota/genética , Poríferos/microbiologia , Água do Mar/microbiologiaRESUMO
Spodoptera frugiperda is a polyphagous pest of several crops of economic importance. Nowadays, the insect is broadly distributed in America and, recently, in Africa, Asia, and Australia. The species has diverged into corn and rice strains. The role of the gut microbiota in insect physiology is relevant due to its participation in crucial functions. However, knowledge of seasonal variations that alter the gut microbiome in pests is limited. Gut microbiome composition between the dry and rainy seasons was analyzed with cultured and uncultured approaches in S. frugiperda corn strain larvae collected at Northwest Colombia, as seasonal microbiome changes might fluctuate due to environmental changes. On the basis of culture-dependent methods, results show well-defined microbiota with bacterial isolates belonging to Enterococcus, Klebsiella (Enterobacteriales: Enterobacteriaceae), Enterobacter (Enterobacterales: Enterobacteriaceae), and Bacillus (Bacillales: Bacillaceae) genera. The community composition displayed a low bacterial diversity across all samples. The core community detected with uncultured methods was composed of Enterococcus, Erysipelatoclostridium (Erysipelotrichales: Erysipelotrichaceae), Rasltonia (Burkholderiales: Burkholderiaceae), and Rhizobium (Hyphomicrobiales: Rhizobiaceae) genera, and Enterobacteriaceae family members. Significant differences in microbiome diversity were observed between the two seasons. The relative abundance of Erysipelatoclostridium was high in the dry season, while in the phylotype ZOR0006 (Erysipelotrichales: Erysipelotrichaceae) and Tyzzerella (Lachnospirales: Lachnospiraceae) genus, the relative abundance was high in the rainy season. The overall low gut bacterial diversity observed in the S. frugiperda corn strain suggests a strong presence of antagonist activity as a selection factor possibly arising from the host, the dominant bacterial types, or the material ingested. Targeting the stability and predominance of this core microbiome could be an additional alternative to pest control strategies, particularly in this moth.
Assuntos
Enterococcus , Microbioma Gastrointestinal , Estações do Ano , Spodoptera/microbiologia , Animais , Colômbia , Larva , Zea maysRESUMO
Sponges harbor characteristic microbiomes derived from symbiotic relationships shaping their lifestyle and survival. Haliclona fulva is encrusting marine sponge species dwelling in coralligenous accretions or semidark caves of the Mediterranean Sea and the near Atlantic Ocean. In this work, we characterized the abundance and core microbial community composition found in specimens of H. fulva by means of electron microscopy and 16S amplicon Illumina sequencing. We provide evidence of its low microbial abundance (LMA) nature. We found that the H. fulva core microbiome is dominated by sequences belonging to the orders Nitrosomonadales and Cenarchaeales. Seventy percent of the reads assigned to these phylotypes grouped in a very small number of high-frequency operational taxonomic units, representing niche-specific species Cenarchaeum symbiosum and uncultured Betaproteobacteria HF1, a new eubacterial ribotype variant found in H. fulva. The microbial composition of H. fulva is quite distinct from those reported in sponge species of the same Haliclona genus. We also detected evidence of an excretion/capturing loop between these abundant microorganisms and planktonic microbes by analyzing shifts in seawater planktonic microbial content exposed to healthy sponge specimens maintained in aquaria. Our results suggest that horizontal transmission is very likely the main mechanism for symbionts' acquisition by H. fulva. So far, this is the first shallow water sponge species harboring such a specific and predominant assemblage composed of these eubacterial and archaeal ribotypes. Our data suggests that this symbiotic relationship is very stable over time, indicating that the identified core microbial symbionts may play key roles in the holobiont functioning.
Assuntos
Archaea/classificação , Betaproteobacteria/classificação , Haliclona/microbiologia , Microbiota , Água do Mar/microbiologia , Simbiose , Animais , Archaea/genética , Archaea/isolamento & purificação , Archaea/fisiologia , Bactérias , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/fisiologia , DNA Arqueal/análise , DNA Bacteriano/análise , França , Mar Mediterrâneo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Microbiologia da ÁguaRESUMO
Bacillus licheniformis strain CG-B52 was isolated as the etiological agent producing a self-limited outbreak of high mortalities in commercial Litopenaeus vannamei culture ponds on the Colombian Caribbean coast in 2005. Here, we report its draft genome and three novel extrachromosomal elements that it harbors.
RESUMO
Pentolite is a mixture (1:1) of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), and little is known about its fate in the environment. This study was aimed to determine the dissipation of pentolite in soils under laboratory conditions. Microcosm experiments conducted with two soils demonstrated that dissipation rate of PETN was significantly slower than that of TNT. Interestingly, the dissipation of PETN was enhanced by the presence of TNT, while PETN did not enhanced the dissipation of TNT. Pentolite dissipation rate was significantly faster under biostimulation treatment (addition of carbon source) in soil from the artificial wetland, while no such stimulation was observed in soil from detonation field. In addition, the dissipation rate of TNT and PETN in soil from artificial wetland under biostimulation was significantly faster than the equivalent abiotic control, although it seems that non-biological processes might also be important for the dissipation of TNT and PETN. Transformation of PETN was also slower during establishment of enrichment culture using pentolite as the sole nitrogen source. In addition, transformation of these explosives was gradually reduced and practically stopped after the forth cultures transfer (80 days). DGGE analysis of bacterial communities from these cultures indicates that all consortia were dominated by bacteria from the order Burkholderiales and Rhodanobacter. In conclusion, our results suggest that PETN might be more persistent than TNT.