RESUMO
While physical activity and zinc supplementation have shown benefits in diabetes management, little is known about their effect on less severe glucose homeostasis disorders, such as impaired glucose tolerance. On the other hand, sirtuins have an important role in glucose metabolism and insulin sensitivity, but to date, there is no information about the impact of zinc supplementation or physical activity on their regulation in individuals with impaired glucose homeostasis. The aim of this study was to assess the effect of supplemental zinc, muscle-resistance training, and their combination on the expression of selected sirtuins in insulin-sensitive tissues of rats with impaired glucose tolerance. Thirty male Wistar rats with impaired glucose tolerance were fed a high-fat diet for 12 weeks while subjected to zinc supplementation, resistance training, both, or none. Morphometric and metabolic evaluations were performed at the end of the experimental period, and gene expression of sirtuins 1, 2, 4, and 7 was assessed in liver, gastrocnemius muscle, and white adipose tissue. Results showed that zinc supplementation and/or resistance training did not improve metabolic parameters of rats with impaired glucose tolerance, nor did they affect the expression of selected sirtuins in any of the tissues evaluated. However, the expression of some sirtuins was associated with metabolic parameters in a tissue-specific manner. Additional studies are needed to evaluate whether zinc supplementation and/or resistance training can improve metabolic status or modulate sirtuins expression in advanced stages of impaired glucose homeostasis.
RESUMO
BACKGROUND: Obesity is a worldwide public health problem characterized by fat tissue accumulation, favouring adipose tissue and metabolic alterations. Increasing energy expenditure (EE) through brown adipose tissue activation and white adipose tissue (WAT) browning has gained relevance as a therapeutic approach. Different bioactive compounds, such as n-3 polyunsaturated fatty acids (PUFA), have been shown to induce those thermogenic effects. This process is regulated by the gut microbiota as well. Nevertheless, obesity is characterized by gut microbiota dysbiosis, which can be restored by weight loss and n-3 PUFA intake, among other factors. Knowledge gap: However, the role of the gut microbiota on the n-3 PUFA effect in inducing thermogenesis in obesity has not been fully elucidated. OBJECTIVE: This review aims to elucidate the potential implications of this interrelation on WAT browning adiposw sittue (BAT), BAT activity, and EE regulation in obesity models.
Assuntos
Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Ácidos Graxos Ômega-3/metabolismo , Humanos , Obesidade/metabolismo , TermogêneseRESUMO
AIM: Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by the progressive destruction of ß cells, mediated by the interaction between T cells and several cytokines. The pathogenesis of T1D has established its possible relationship with miRNAs. In this study, we analyze the expression profile of miR-15a and miR-16 in peripheral blood mononuclear cells (PBMCs) and their possible association with apoptosis, inflammation, or autoimmunity markers. PATIENTS AND METHODOLOGY: 38 T1D patients and 41 control subjects were recruited. mRNAs were analyzed by means of qPCR and TaqMan probes. PBMCs were treated with different concentrations of glucose (baseline, 11 and 25 mM) with or without an inflammatory stimulus as TNF-α (10 ng/ml). RESULTS: A decrease in the levels of the miR-15a expression in basal conditions is observed in T1D patients compared to healthy control subjects (relative units 0.5 vs. 1.8, p < 0.05). This change in miR-15a and miR-16 is not affected by the addition of TNF-α. No association is observed with inflammatory markers (IL-6, TNF-α, vCAM) or apoptosis (bcl2 expression). The relationship with immunological markers shows an interaction effect between miR16 and IA-2 (p < 0.03). CONCLUSION: TNF-α does not affect the expression profile of miR-15a and miR16 in PBMCs. A weak correlation is observed between miR-16 and with the autoimmunity profile (IA-2 autoantibody).
Assuntos
Apoptose/fisiologia , Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Mediadores da Inflamação/metabolismo , MicroRNAs/biossíntese , Adolescente , Adulto , Apoptose/efeitos dos fármacos , Autoimunidade/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Chile/epidemiologia , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Fator de Necrose Tumoral alfa/toxicidade , Adulto JovemRESUMO
AIM: Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by the progressive destruction of ß cells, mediated by the interaction between T cells and several cytokines. The pathogenesis of T1D has established its possible relationship with miRNAs. In this study, we analyze the expression profile of miR-15a and miR-16 in peripheral blood mononuclear cells (PBMCs) and their possible association with apoptosis, inflammation, or autoimmunity markers. PATIENTS AND METHODOLOGY: 38 T1D patients and 41 control subjects were recruited. mRNAs were analyzed by means of qPCR and TaqMan probes. PBMCs were treated with different concentrations of glucose (baseline, 11 and 25 mM) with or without an inflammatory stimulus as TNF-α (10 ng/ml). RESULTS: A decrease in the levels of the miR-15a expression in basal conditions is observed in T1D patients compared to healthy control subjects (relative units 0.5 vs. 1.8, p < 0.05). This change in miR-15a and miR-16 is not affected by the addition of TNF-α. No association is observed with inflammatory markers (IL-6, TNF-α, vCAM) or apoptosis (bcl2 expression). The relationship with immunological markers shows an interaction effect between miR16 and IA-2 (p < 0.03). CONCLUSION: TNF-α does not affect the expression profile of miR-15a and miR16 in PBMCs. A weak correlation is observed between miR-16 and with the autoimmunity profile (IA-2 autoantibody).
RESUMO
Expansion of white adipose tissue induce insufficient vascularization, driving hypoxia and low-grade inflammation. Resident preadipocytes are thought to be involved. We evaluated the effects of hypoxia over preadipocytes and adipocytes, to determine which cellular type impacts the most over macrophages activation. 3T3-L1 cells were either differentiated, or maintained undifferentiated. Each group was subjected to the presence or absence of chemical hypoxia (200 µM CoCl2) for 24 h. Conditioned media were used as treatment for murine RAW264.7 macrophages for 24 h. Gene expression of HIF-1α and TNF-α, and the release of several markers were assessed. It was observed that culture media from hypoxic preadipocytes induced greater expression of inflammatory markers and NO release than culture media from hypoxic adipocytes, by macrophages. Gene expression correlated closer with inflammatory markers release specially on macrophages treated with conditioned media from preadipocytes. Hence, the present work highlights the importance of preadipocytes on inflammatory conditions in vitro.
Assuntos
Adipócitos/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Cobalto/farmacologia , Meios de Cultivo Condicionados/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Evoked potentials in the olfactory bulb (OB), lateral hypothalamus (HL) and rostral portion of the nucleus of the tractus solitarius (NTS), were recorded after cervical vagus nerve stimulation. The slow component in the OB only was recorded in the periglomerular layer. Electrolytic lesion of the NTS, abolished the evoked potentials in the OB by vagus nerve stimulation. The results of the present experiments indicate that the pathway from the vagus nerve to OB go into the NTS but probably not into the LH.