Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 28(8): e13286, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500492

RESUMO

Drugs of abuse induce cell type-specific adaptations in D1- and D2-medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) that can bias signalling towards D1-MSNs and enhance relapse vulnerability. Whether Δ9 -tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC + cannabidiol (THC + CBD). After extinction training spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC + CBD induced a loss of large spine heads in D1- but not D2-MSNs and commensurate reductions in glutamate synaptic transmission. Also, presynaptic CB1R function was impaired selectively at glutamatergic synapses on D1-MSNs, which augmented the capacity to potentiate glutamate transmission. Using cFOS expression as an activity marker, we found no change after extinction but increased cFOS expression in D1-MSNs after cue-induced drug seeking. Contrasting D1-MSNs, CB1R function and glutamate synaptic transmission on D2-MSN synapses were unaffected by THC + CBD use. However, cFOS expression was decreased in D2-MSNs of THC + CBD-extinguished rats and was restored after drug seeking. Thus, CB1R adaptations in D1-MSNs partially predicted neuronal activity changes, posing pathway specific modulation of eCB signalling in D1-MSNs as a potential treatment avenue for cannabis use disorder (CUD).


Assuntos
Dronabinol , Núcleo Accumbens , Ratos , Animais , Camundongos , Núcleo Accumbens/metabolismo , Dronabinol/farmacologia , Dronabinol/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Ratos Transgênicos , Glutamatos/metabolismo , Receptores de Dopamina D1/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
2.
Front Physiol ; 13: 896268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091376

RESUMO

Though the facilitating influence of stress on drug abuse is well documented, the mechanisms underlying this interaction have yet to be fully elucidated. The present study explores the neurobiological mechanisms underpinning the sensitized response to the psychomotor-stimulating effects of cocaine following chronic restraint stress (CRS), emphasizing the differential contribution of both subcompartments of the nucleus accumbens (NA), the core (NAcore) and shell (NAshell), to this phenomenon. Adult male Wistar rats were restrained for 2 h/day for 7 days and, 2 weeks after the last stress exposure (day 21), all animals were randomly assigned to behavioral, biochemical or neurochemical tests. Our results demonstrated that the enduring CRS-induced increase in psychostimulant response to cocaine was paralleled by an increase of extracellular dopamine levels in the NAcore, but not the NAshell, greater than that observed in the non-stress group. Furthermore, we found that CRS induced an impairment of glutamate homeostasis in the NAcore, but not the NAshell. Its hallmarks were increased basal extracellular glutamate concentrations driven by a CRS-induced downregulation of GLT-1, blunted glutamate levels in response to cocaine and postsynaptic structural remodeling in pre-stressed animals. In addition, ceftriaxone, a known GLT-1 enhancer, prevented the CRS-induced GLT-1 downregulation, increased basal extracellular glutamate concentrations and changes in structural plasticity in the NAcore as well as behavioral cross-sensitization to cocaine, emphasizing the biological importance of GLT-1 in the comorbidity between chronic stress exposure and drug abuse. A future perspective concerning the paramount relevance of the stress-induced disruption of glutamate homeostasis as a vulnerability factor to the development of stress and substance use disorders during early life or adulthood of descendants is provided.

3.
Sci Adv ; 8(32): eabo7044, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947652

RESUMO

Opioid use disorder (OUD) produces detrimental personal and societal consequences. Astrocytes are a major cell group in the brain that receives little attention in mediating OUD. We determined how astrocytes and the astroglial glutamate transporter, GLT-1, in the nucleus accumbens core adapt and contribute to heroin seeking in rats. Seeking heroin, but not sucrose, produced two transient forms of plasticity in different astroglial subpopulations. Increased morphological proximity to synapses occurred in one subpopulation and increased extrasynaptic GLT-1 expression in another. Augmented synapse proximity by astroglia occurred selectively at D2-dopamine receptor-expressing dendrites, while changes in GLT-1 were not neuron subtype specific. mRNA-targeted antisense inhibition of either morphological or GLT-1 plasticity promoted cue-induced heroin seeking. Thus, we show that heroin cues induce two distinct forms of transient plasticity in separate astroglial subpopulations that dampen heroin relapse.

4.
Addict Biol ; 27(2): e13151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229943

RESUMO

Nicotine addiction is a chronic relapsing brain disorder, and cigarette smoking is the leading cause of preventable death in the United States. Currently, the most effective pharmacotherapy for smoking cessation is Varenicline (VRN), which reduces both positive and negative reinforcement by nicotine. Clinically, VRN attenuates withdrawal symptoms and promotes abstinence, but >50% of smokers relapse within 3 months following a quit attempt. This may indicate that VRN fails to ameliorate components of nicotine-induced neuroplasticity that promote relapse vulnerability. Animal models reveal that glutamate dysregulation in the nucleus accumbens is associated with nicotine relapse. N-acetylcysteine (NAC) normalizes glutamate transmission and prolongs cocaine abstinence. Thus, combining VRN and NAC may promote and maintain, respectively, nicotine abstinence. In rats, we found that VRN effectively reduced nicotine self-administration and seeking in early abstinence, but not seeking later in abstinence. In contrast, NAC reduced seeking only later in abstinence. Because VRN and NAC are sometimes associated with mild adverse effects, we also evaluated a sequential approach combining subthreshold doses of VRN during self-administration and early abstinence with subthreshold doses of NAC during late abstinence. As expected, subthreshold VRN did not reduce nicotine intake. However, subthreshold VRN and NAC reduced seeking in late abstinence, suggesting a combined effect. Overall, our results suggest that combining subthreshold VRN and NAC is a viable and drug-specific approach to promote abstinence and reduce relapse while minimizing adverse effects. Our data also suggest that different components and time points in addiction engage the different neurocircuits targeted by VRN and NAC.


Assuntos
Abandono do Hábito de Fumar , Tabagismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Nicotina/farmacologia , Ratos , Tabagismo/tratamento farmacológico , Tabagismo/prevenção & controle , Vareniclina/farmacologia , Vareniclina/uso terapêutico
5.
Neuropsychopharmacology ; 47(5): 1037-1045, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35145212

RESUMO

Individuals diagnosed with post-traumatic stress disorder (PTSD) are often comorbid for substance use disorders. Cannabis is widely used by PSTD patients, and the literature is mixed on whether cannabis use ameliorates or exacerbates patient responses to stress-associated conditioned stimuli (stress-CS). We determined if cannabis use affects responsivity to stress-CS in rats receiving 2 h stress in the presence of an odor stress-CS. Three weeks after acute stress, rats self-administered cannabinoids (delta9-tetrahydrocannabinol + cannabidiol; THC + CBD) for 15 days, and the stressed males consumed more THC + CBD than sham males. We then used the stress-CS or a novel odor (stress-NS) to reinstate THC + CBD seeking. Surprisingly, the stress-NS reinstated THC + CBD seeking, an effect blocked by N-acetylcysteine. Moreover, the stress-CS inhibited THC + CBD-CS induced reinstatement. To determine if the unexpected effects of stress-NS and -CS resulted from THC + CBD altering conditioned stress, the effect of THC + CBD use on stress-NS/CS-induced coping behaviors and spine morphology was quantified. In THC + CBD-treated rats, stress-NS increased active coping (burying). Conversely, stress-CS reduced active coping and increased passive coping (immobility) and other behavioral parameters associated with stress responses, including self-grooming and defecation. Transient spine head expansion in nucleus accumbens core is necessary for cue-induced drug seeking, and THC + CBD self-administration prevented the increase in head diameter by stress-CS in control rats. These data show THC + CBD self-administration altered the salience of environmental cues, causing neutral cues to promote active behavior (drug seeking and burying) and stress-CS to switch from active to passive behavior (inhibiting drug seeking and immobilization). We hypothesize that cannabis may exacerbate conditioned stress responses.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Animais , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides , Dronabinol/farmacologia , Alucinógenos/farmacologia , Humanos , Masculino , Ratos
6.
Brain Behav Immun ; 101: 359-376, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065197

RESUMO

Stressful experience-induced cocaine-related behaviors are associated with a significant impairment of glutamatergic mechanisms in the Nucleus Accumbens core (NAcore). The hallmarks of disrupted glutamate homeostasis following restraint stress are the enduring imbalance of glutamate efflux after a cocaine stimulus and increased basal concentrations of extracellular glutamate attributed to GLT-1 downregulation in the NAcore. Glutamate transmission is tightly linked to microglia functioning. However, the role of microglia in the biological basis of stress-induced addictive behaviors is still unknown. By using minocycline, a potent inhibitor of microglia activation with anti-inflammatory properties, we determined whether microglia could aid chronic restraint stress (CRS)-induced glutamate homeostasis disruption in the NAcore, underpinning stress-induced cocaine self-administration. In this study, adult male rats were restrained for 2 h/day for seven days (day 1-7). From day 16 until completing the experimental protocol, animals received a vehicle or minocycline treatment (30 mg/Kg/12h i.p.). On day 21, animals were assigned to microscopic, biochemical, neurochemical or behavioral studies. We confirm that the CRS-induced facilitation of cocaine self-administration is associated with enduring GLT-1 downregulation, an increase of basal extracellular glutamate and postsynaptic structural plasticity in the NAcore. These alterations were strongly related to the CRS-induced reactive microglia and increased TNF-α mRNA and protein expression, since by administering minocycline, the impaired glutamate homeostasis and the facilitation of cocaine self-administration were prevented. Our findings are the first to demonstrate that minocycline suppresses the CRS-induced facilitation of cocaine self-administration and glutamate homeostasis disruption in the NAcore. A role of microglia is proposed for the development of glutamatergic mechanisms underpinning stress-induced vulnerability to cocaine addiction.


Assuntos
Cocaína , Animais , Cocaína/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Microglia/metabolismo , Minociclina/metabolismo , Minociclina/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166324, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954343

RESUMO

BACKGROUND: Myelin-associated glycoprotein (MAG) is a key molecule involved in the nurturing effect of myelin on ensheathed axons. MAG also inhibits axon outgrowth after injury. In preclinical stroke models, administration of a function-blocking anti-MAG monoclonal antibody (mAb) aimed to improve axon regeneration demonstrated reduced lesion volumes and a rapid clinical improvement, suggesting a mechanism of immediate neuroprotection rather than enhanced axon regeneration. In addition, it has been reported that antibody-mediated crosslinking of MAG can protect oligodendrocytes (OLs) against glutamate (Glu) overload by unknown mechanisms. PURPOSE: To unravel the molecular mechanisms underlying the protective effect of anti-MAG therapy with a focus on neuroprotection against Glu toxicity. RESULTS: MAG activation (via antibody crosslinking) triggered the clearance of extracellular Glu by its uptake into OLs via high affinity excitatory amino acid transporters. This resulted not only in protection of OLs but also nearby neurons. MAG activation led to a PKC-dependent activation of factor Nrf2 (nuclear-erythroid related factor-2) leading to antioxidant responses including increased mRNA expression of metabolic enzymes from the glutathione biosynthetic pathway and the regulatory chain of cystine/Glu antiporter system xc- increasing reduced glutathione (GSH), the main antioxidant in cells. The efficacy of early anti-MAG mAb administration was demonstrated in a preclinical model of excitotoxicity induced by intrastriatal Glu administration and extended to a model of Experimental Autoimmune Encephalitis showing axonal damage secondary to demyelination. CONCLUSIONS: MAG activation triggers Glu uptake into OLs under conditions of Glu overload and induces a robust protective antioxidant response.


Assuntos
Anticorpos Monoclonais/imunologia , Ácido Glutâmico/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Axônios/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Ácido Glutâmico/administração & dosagem , Ácido Glutâmico/farmacologia , Glutationa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Associada a Mielina/imunologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Behav Brain Res ; 415: 113517, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389427

RESUMO

Cannabis use disorder (CUD) has doubled in prevalence over the past decade as a nation-wide trend toward legalization allows for increased drug accessibility. As a result, marijuana has become the most commonly used illicit drug in the United States particularly among the adolescent population. This is especially concerning since there is greater risk for the harmful side effects of drug use during this developmental period due to ongoing brain maturation. Increasing evidence indicates that CUD often occurs along with other debilitating conditions including both alcohol use disorder (AUD) and anxiety disorders such post-traumatic stress disorder (PTSD). Additionally, exposure to cannabis, alcohol, and stress can induce alterations in glutamate regulation and homeostasis in the prefrontal cortex (PFC) that may lead to impairments in neuronal functioning and cognition. Therefore, in order to study the relationship between drug exposure and the development of PTSD, these studies utilized rodent models to determine the impact of adolescent exposure to delta-9-tetrahydrocannabinol (THC) and ethanol on responses to fear stimuli during fear conditioning and used calcium imaging to measure glutamate activity in the prelimbic cortex during this behavioral paradigm. The results from these experiments indicate that adolescent exposure to THC and ethanol leads to enhanced sensitivity to fear stimuli both behaviorally and neuronally. Additionally, these effects were attenuated when animals were treated with the glutamatergic modulator N-acetylcysteine (NAC). In summary, these studies support the hypothesis that adolescent exposure to THC and ethanol leads to alterations in fear stimuli processing through glutamatergic reliant modifications in PFC signaling.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Dronabinol/farmacologia , Etanol/farmacologia , Medo/efeitos dos fármacos , Fatores Etários , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Depressores do Sistema Nervoso Central/administração & dosagem , Dronabinol/administração & dosagem , Etanol/administração & dosagem , Masculino , Ratos , Ratos Wistar
9.
Neuropsychopharmacology ; 46(10): 1848-1856, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226657

RESUMO

Exposure to acute stress can increase vulnerability to develop or express many psychiatric disorders, including post-traumatic stress disorder. We hypothesized that stress-induced psychiatric vulnerability is associated with enduring neuroplasticity in the nucleus accumbens core because stress exposure can alter drug addiction-related behaviors that are associated with accumbens synaptic plasticity. We used a single 2-h stress session and 3 weeks later exposed male and female rats to stress-conditioned odors in a modified defensive burying task, and quantified both active and avoidant coping strategies. We measured corticosterone, dendritic spine and astrocyte morphology in accumbens, and examined reward sensitivity using a sucrose two-bottle choice and operant sucrose self-administration. Exposure to stress odor increased burying (active coping) and immobility (avoidant coping) in the defensive burying task in female and male rats. Systemic corticosterone was transiently increased by both ongoing acute restraint stress and stress-conditioned odors. Three weeks after administering acute restraint stress, we observed increased dendritic spine density and head diameter, and decreased synaptic association with astroglia and the astroglial glutamate transporter, GLT-1. Exposure to conditioned stress further increased head diameter without affecting spine density or astroglial morphology, and this increase by conditioned stress was correlated with burying behavior. Finally, we found that stress-exposed females have a preference for sweet solutions and higher motivation to seek sucrose than stressed male rats. We conclude that acute stress produced enduring plasticity in accumbens postsynapses and associated astroglia. Moreover, conditioned stress odors induced active behavioral coping strategies that were correlated with dendritic spine morphology.


Assuntos
Sinais (Psicologia) , Plasticidade Neuronal , Animais , Comportamento de Procura de Droga , Feminino , Masculino , Núcleo Accumbens , Ratos , Ratos Sprague-Dawley
10.
Neurobiol Stress ; 15: 100349, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34169122

RESUMO

Actin dynamics in dendritic spines can be associated with the neurobiological mechanisms supporting the comorbidity between stress exposure and cocaine increase rewards. The actin cytoskeleton remodeling in the nucleus accumbens (NA) has been implicated in the expression of stress-induced cross-sensitization with cocaine. The present study evaluates the involvement of cofilin, a direct regulator of actin dynamics, in the impact of stress on vulnerability to cocaine addiction. We assess whether the neurobiological mechanisms that modulate repeated-cocaine administration also occur in a chronic restraint stress-induced cocaine self-administration model. We also determine if chronic stress induces alterations in dendritic spines through dysregulation of cofilin activity in the NA core. Here, we show that the inhibition of cofilin expression in the NA core using viral short-hairpin RNA is sufficient to prevent the cocaine sensitization induced by chronic stress. The reduced cofilin levels also impede a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor surface expression enhancement and promote the reduction of head diameter in animals pre-exposed to stress after a cocaine challenge in the NA core. Moreover, downregulation of cofilin expression prevents facilitation of the acquisition of cocaine self-administration (SA) in male rats pre-exposed to chronic stress without modifying performance in sucrose SA. These findings reveal a novel, crucial role for cofilin in the neurobiological mechanisms underpinning the comorbidity between stress exposure and addiction-related disorders.

11.
Eur J Neurosci ; 53(5): 1441-1449, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159343

RESUMO

Altered glutamate transmission within the nucleus accumbens (NAc) has been proposed as a central mechanism underlying behavioural sensitisation associated with repeated cocaine exposure. In addition to glutamate, enkephalin, an endogenous opioid peptide derived from proenkephalin, is necessary for the neuroadaptations associated with chronic cocaine. However, the influence of enkephalin on long-term changes in glutamate transmission within the NAc associated with cocaine-induced sensitisation has not been described. This study used knockout proenkephalin mice (KO) to study the influence of endogenous enkephalin on the adaptations in glutamate neurotransmission associated with repeated cocaine treatment. Wild-type (WT) and KO mice were treated with daily cocaine injections for 9 days to induce sensitisation. On days 15 and 21, the animals received a cocaine challenge and locomotor sensitisation was evaluated, and microdialysis was performed to determine accumbens glutamate content on day 21. No expression of behavioural sensitisation to cocaine was evidenced in the KO mice. Consistently, these showed no changes in glutamate transmission in the NAc associated with repeated cocaine. This study reveals the central role of enkephalin in regulating the glutamate mechanisms associated with cocaine sensitisation.


Assuntos
Cocaína , Animais , Encefalinas/genética , Ácido Glutâmico , Camundongos , Microdiálise , Núcleo Accumbens
12.
J Neurosci ; 40(44): 8463-8477, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33051346

RESUMO

Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal tripeptide Arginine-Glycine-Aspartate (RGD) domains that bind and signal through integrins. Integrins are heterodimeric receptors composed of αß subunits, and a primary signaling kinase is focal adhesion kinase (FAK). We previously showed that MMP activation is necessary for and potentiates cued reinstatement of cocaine seeking, and MMP-induced catalysis stimulates ß3-integrins to induce t-SP. Here, we determined whether ß3-integrin signaling through FAK and cofilin (actin depolymerization factor) is necessary to promote synaptic growth during t-SP. Using a small molecule inhibitor to prevent FAK activation, we blocked cued-induced cocaine reinstatement and increased spine head diameter (dh). Immunohistochemistry on NAcore labeled spines with ChR2-EYFP virus, showed increased immunoreactivity of phosphorylation of FAK (p-FAK) and p-cofilin in dendrites of reinstated animals compared with extinguished and yoked saline, and the p-FAK and cofilin depended on ß3-integrin signaling. Next, male and female transgenic rats were used to selectively label D1 or D2 neurons with ChR2-mCherry. We found that p-FAK was increased during drug seeking in both D1 and D2-medium spiny neurons (MSNs), but increased p-cofilin was observed only in D1-MSNs. These data indicate that ß3-integrin, FAK and cofilin constitute a signaling pathway downstream of MMP activation that is involved in promoting the transient synaptic enlargement in D1-MSNs induced during reinstated cocaine by drug-paired cues.SIGNIFICANCE STATEMENT Drug-associated cues precipitate relapse, which is correlated with transient synaptic enlargement in the accumbens core. We showed that cocaine cue-induced synaptic enlargement depends on matrix metalloprotease signaling in the extracellular matrix (ECM) through ß3-integrin to activate focal adhesion kinase (FAK) and phosphorylate the actin binding protein cofilin. The nucleus accumbens core (NAcore) contains two predominate neuronal subtypes selectively expressing either D1-dopamine or D2-dopamine receptors. We used transgenic rats to study each cell type and found that cue-induced signaling through cofilin phosphorylation occurred only in D1-expressing neurons. Thus, cocaine-paired cues initiate cocaine reinstatement and synaptic enlargement through a signaling cascade selectively in D1-expressing neurons requiring ECM stimulation of ß3-integrin-mediated phosphorylation of FAK (p-FAK) and cofilin.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina beta3/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/psicologia , Sinais (Psicologia) , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Comportamento de Procura de Droga , Ativação Enzimática , Humanos , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Recidiva , Sinapses
13.
Psychopharmacology (Berl) ; 237(6): 1709-1721, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125483

RESUMO

RATIONALE: There is a robust relationship between anxiety disorders, including post-traumatic stress disorder (PTSD) and substance abuse. In fact, 30-50% of people seeking treatment for substance abuse have a comorbid diagnosis for PTSD. Heroin use is at epic proportions in the USA and is commonly used by people with co-occurring PTSD symptoms and substance use disorder. OBJECTIVES: Here, we combined animal assays of acute restraint stress and contingent heroin self-administration (SA) to study comorbidity between stress disorders and opioid use disorder and identify shifts in anxiety-like behaviors following stress and/or heroin in response to a stress-conditioned cue. Our objective for this approach was to determine the long-term impact of acute restraint stress and heroin self-administration on stress reactivity and basic reward processes. METHODS: We used 2-h acute restraint stress paired with an odor stimulus to condition a stress cue (CS) for testing of subsequent stress reactivity in a burying task and reinstatement and extinction to heroin seeking. Rats were also tested for social place preference for measures of social reward and anxiety-like behaviors. RESULTS: Stress rats exhibited multiple levels of disrupted behavior including enhanced acquisition of heroin intake and reinstatement in response to the stress CS, as well as delayed extinction in response to the stress CS. All rats developed a social place preference, but stress rats spent more time in nose-to-nose contact with the unfamiliar rat while heroin rats spent time exploring the chamber. In the burying task, stress shortened latencies to bury the CS and increased burying and immobility in male and female rats relative to sham counterparts. CONCLUSIONS: Acute restraint stress results in anxiety-like behaviors and a stress-associated cue is sufficient to reinstate extinguished heroin seeking. This project has the potential to elucidate the complex relationship between stress/anxiety disorders, including some PTSD-like characteristics, and the onset, maintenance, and relapse to heroin seeking.


Assuntos
Extinção Psicológica , Dependência de Heroína/psicologia , Heroína/administração & dosagem , Restrição Física/psicologia , Estresse Psicológico/psicologia , Animais , Sinais (Psicologia) , Extinção Psicológica/fisiologia , Feminino , Masculino , Odorantes , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Autoadministração
14.
Addict Biol ; 25(5): e12798, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31282090

RESUMO

Converging epidemiological studies show that a life-threatening event increases the incidence of posttraumatic stress disorder (PTSD), which carries 30% to 50% comorbidity with substance use disorders (SUDs). Such comorbidity results in greater drug use and poorer treatment outcomes. There is overlap between the enduring synaptic neuroadaptations produced in nucleus accumbens core (NAcore) by acute restraint stress and cocaine self-administration. Because of these coincident neuroadaptations, we hypothesized that an odor paired with acute restraint stress would reinstate drug seeking and chose two mechanistically distinct drugs of abuse to test this hypothesis: alcohol and cocaine. Rats were trained to self-administer either drug beginning 3 weeks after odor pairing with acute stress or sham, and acute restraint stress increased alcohol consumption. Following context extinction training, the stress-paired odor reinstated both alcohol and cocaine seeking, while an unpaired odor had no effect. N-Acetylcysteine (NAC) restores drug and stress-induced reductions in glial glutamate transporter-1 and has proven effective at reducing cue-induced reinstatement of drug seeking. We administered NAC for 5 days prior to reinstatement testing and abolished the capacity of the stress-paired odor to increase alcohol and cocaine seeking. Importantly, daily NAC given during or just following experiencing acute restraint stress also prevented the capacity of stress-paired odors to reinstate alcohol and cocaine seeking and prevented stress-induced deficits in behavioral flexibility. These data support using daily NAC treatment during or immediately after experiencing a strong acute stress to prevent subsequent conditioned stress responding, in particular relapse and cognitive deficits induced by stress-conditioned stimuli.


Assuntos
Acetilcisteína/farmacologia , Transtornos Relacionados ao Uso de Álcool/complicações , Transtornos Relacionados ao Uso de Álcool/psicologia , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/psicologia , Estresse Psicológico/complicações , Doença Aguda , Animais , Cocaína/administração & dosagem , Sinais (Psicologia) , Modelos Animais de Doenças , Comportamento de Procura de Droga/efeitos dos fármacos , Etanol/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração , Estresse Psicológico/psicologia
15.
Mol Neurobiol ; 57(1): 346-357, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31359322

RESUMO

Cocaine addiction remains a major health concern with limited effective treatment options. A better understanding of mechanisms underlying relapse may help inform the development of new pharmacotherapies. Emerging evidence suggests that collapsin response mediator protein 2 (CRMP2) regulates presynaptic excitatory neurotransmission and contributes to pathological changes during diseases, such as neuropathic pain and substance use disorders. We examined the role of CRMP2 and its interactions with a known binding partner, CaV2.2, in cocaine-seeking behavior. We employed the rodent self-administration model of relapse to drug seeking and focused on the prefrontal cortex (PFC) for its well-established role in reinstatement behaviors. Our results indicated that repeated cocaine self-administration resulted in a dynamic and persistent alteration in the PFC expression of CRMP2 and its binding partner, the CaV2.2 (N-type) voltage-gated calcium channel. Following cocaine self-administration and extinction training, the expression of both CRMP2 and CaV2.2 was reduced relative to yoked saline controls. By contrast, cued reinstatement potentiated CRMP2 expression and increased CaV2.2 expression above extinction levels. Lastly, we utilized the recently developed peptide myr-TAT-CBD3 to disrupt the interaction between CRMP2 and CaV2.2 in vivo. We assessed the reinstatement behavior after infusing this peptide directly into the medial PFC and found that it decreased cue-induced reinstatement of cocaine seeking. Taken together, these data suggest that neuroadaptations in the CRMP2/CaV2.2 signaling cascade in the PFC can facilitate drug-seeking behavior. Targeting such interactions has implications for the treatment of cocaine relapse behavior.


Assuntos
Cocaína/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Canais de Cálcio Tipo N/metabolismo , Cocaína/administração & dosagem , Sinais (Psicologia) , Modelos Animais de Doenças , Masculino , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Autoadministração
16.
Addict Biol ; 25(5): e12797, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31330570

RESUMO

Nicotine self-administration is associated with decreased expression of the glial glutamate transporter (GLT-1) and the cystine-glutamate exchange protein xCT within the nucleus accumbens core (NAcore). N-acetylcysteine (NAC) has been shown to restore these proteins in a rodent model of drug addiction and relapse. However, the specific molecular mechanisms driving its inhibitory effects on cue-induced nicotine reinstatement are unknown. Here, we confirm that extinction of nicotine-seeking behavior is associated with impaired NAcore GLT-1 function and expression and demonstrates that reinstatement of nicotine seeking rapidly enhances membrane fraction GLT-1 expression. Extinction and cue-induced reinstatement of nicotine seeking was also associated with increased tumor necrosis factor alpha (TNFα) and decreased glial fibrillary acidic protein (GFAP) expression in the NAcore. NAC treatment (100 mg/kg/day, i.p., for 5 d) inhibited cue-induced nicotine seeking and suppressed AMPA to NMDA current ratios, suggesting that NAC reduces NAcore postsynaptic excitability. In separate experiments, rats received NAC and an antisense vivo-morpholino to selectively suppress GLT-1 expression in the NAcore during extinction and were subsequently tested for cue-induced reinstatement of nicotine seeking. NAC treatment rescued NAcore GLT-1 expression and attenuated cue-induced nicotine seeking, which was blocked by GLT-1 antisense. NAC also reduced TNFα expression in the NAcore. Viral manipulation of the NF-κB pathway, which is downstream of TNFα, revealed that cue-induced nicotine seeking is regulated by NF-κB pathway signaling in the NAcore independent of GLT-1 expression. Ultimately, these results are the first to show that immunomodulatory mechanisms may regulate known nicotine-induced alterations in glutamatergic plasticity that mediate cue-induced nicotine-seeking behavior.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Acetilcisteína/metabolismo , Animais , Condicionamento Psicológico , Modelos Animais de Doenças , Comportamento de Procura de Droga/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Nicotina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
17.
Biol Psychiatry ; 86(5): 377-387, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126696

RESUMO

BACKGROUND: Cue-induced relapse to drug use is a primary symptom of cocaine addiction. Cue-induced transient excitatory synaptic potentiation (t-SP) induced in the nucleus accumbens mediates cued cocaine seeking in rat models of relapse. Cue-induced t-SP depends on extracellular signaling by matrix metalloproteases (MMPs), but it is unknown how this catalytic activity communicates with nucleus accumbens neurons to induce t-SP and cocaine seeking. METHODS: Male Sprague Dawley rats (N = 125) were trained to self-administer cocaine, after which self-administration was extinguished and then reinstated by cocaine-conditioned cues. We used a morpholino antisense strategy to knock down the ß1 or ß3 integrin subunits or inhibitors to prevent phosphorylation of the integrin signaling kinases focal adhesion kinase (FAK) or integrin-linked kinase. We quantified protein changes with immunoblotting and t-SP by measuring dendritic spine morphology and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate glutamate currents. Integrin signaling was stimulated by microinjecting an MMP activator or integrin peptide ligand into the accumbens. RESULTS: Knockdown of ß3 integrin or FAK inhibitor, but not ß1 integrin or integrin-linked kinase inhibitor, prevented cue-induced cocaine seeking but not sucrose seeking. ß3 integrin knockdown prevented t-SP as measured by preventing the cue-induced increases in both alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate glutamate ratio and spine head diameter. Activating MMP gelatinases with tissue plasminogen activator potentiated cue-induced reinstatement, which was prevented by ß3 integrin knockdown and FAK inhibition. Stimulating integrin receptors with the RGD ligand liberated by MMP gelatinase activity also potentiated cued cocaine seeking. CONCLUSIONS: Activation of MMP gelatinase in the extracellular space is necessary for and potentiates cued cocaine seeking. This extracellular catalysis stimulates ß3 integrins and activates FAK to induce t-SP and promote cue-induced cocaine seeking.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Integrina beta3/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Cocaína/administração & dosagem , Sinais (Psicologia) , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Modelos Neurológicos , Motivação , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Recidiva , Autoadministração
18.
J Neurosci ; 39(11): 2041-2051, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30622165

RESUMO

Outputs from the nucleus accumbens (NAc) include projections to the ventral pallidum and the ventral tegmental area and subtantia nigra in the ventral mesencephalon. The medium spiny neurons (MSN) that give rise to these pathways are GABAergic and consist of two populations of equal number that are segregated by differentially expressed proteins, including D1- and D2-dopamine receptors. Afferents to the ventral pallidum arise from both D1- and D2-MSNs, whereas the ventral mesencephalon is selectively innervated by D1-MSN. To determine the extent of collateralization of D1-MSN to these axon terminal fields we used retrograde labeling in transgenic mice expressing tdTomato selectively in D1-MSN, and found that a large majority of D1-MSN in either the shell or core subcompartments of the accumbens collateralized to both output structures. Approximately 70% of D1-MSNs projecting to the ventral pallidum collateralized to the ventral mesencephalon, whereas >90% of mesencephalic D1-MSN afferents collateralized to the ventral pallidum. In contrast, <10% of dorsal striatal D1-MSNs collateralized to both the globus pallidus and ventral mesencephalon. D1-MSN activation is required for conditioned cues to induce cocaine seeking. To determine which D1-MSN projection mediates cued cocaine seeking, we selectively transfected D1-MSNs in transgenic rats with an inhibitory Gi-coupled DREADD. Activation of the transfected Gi-DREADD with clozapine-N-oxide administered into the ventral pallidum, but not into the ventral mesencephalon, blocked cue-induced cocaine seeking. These data show that, although accumbens D1-MSNs largely collateralize to both the ventral pallidum and ventral mesencephalon, only D1-MSN innervation of the ventral pallidum is necessary for cue-induced cocaine seeking.SIGNIFICANCE STATEMENT Activity in D1 dopamine receptor-expressing neurons in the NAc is required for rodents to respond to cocaine-conditioned cues and relapse to drug seeking behaviors. The D1-expressing neurons project to both the ventral pallidum and ventral mesencephalon, and we found that a majority of the neurons that innervate the ventral pallidum also collateralize to the ventral mesencephalon. However, despite innervating both structures, only D1 innervation of the ventral pallidum mediates cue-induced cocaine seeking.


Assuntos
Prosencéfalo Basal/fisiologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/fisiologia , Animais , Prosencéfalo Basal/citologia , Condicionamento Clássico , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Núcleo Accumbens/citologia , Ratos Long-Evans , Ratos Transgênicos
19.
Addict Biol ; 24(5): 860-873, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890020

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates a variety of physiological processes, and several studies have explored the role of BDNF in addiction-related brain regions like the nucleus accumbens core (NAcore). We sought to understand the rapid effects of endogenous BDNF on cocaine seeking. Rats were trained to self-administer cocaine and extinguished. We then microinjected two inhibitors of BDNF stimulation of tropomyosin receptor kinase B (TrkB), the non-competitive receptor antagonist ANA-12 and TrkB/Fc, a fusion protein that binds BDNF and prevents TrkB stimulation. Blocking TrkB or inactivating BDNF in NAcore potentiated active lever pressing, showing that endogenous BDNF tone was present and supplying inhibitory tone on cue-induced reinstatement. To determine if exogenous BDNF also negatively regulated reinstatement, BDNF was microinjected into NAcore 15 minutes before cue-induced reinstatement. BDNF decreased cocaine seeking through TrkB receptor binding, but had no effect on inactive lever pressing, spontaneous or cocaine-induced locomotion, or on reinstated sucrose seeking. BDNF-infusion potentiated within trial extinction when microinjected in the NAcore during cue- and context + cue induced reinstatement, and the inhibition of lever pressing lasted at least 3 days post injection. Although decreased reinstatement endured for 3 days when BDNF was administered prior to a reinstatement session, when microinjected before an extinction session or in the home cage, BDNF did not alter subsequent cued-reinstatement. Together, these data show that endogenous BDNF acts on TrKB to provide inhibitory tone on reinstated cocaine seeking, and this effect was recapitulated by exogenous BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Comportamento de Procura de Droga/fisiologia , Análise de Variância , Animais , Azepinas/farmacologia , Benzamidas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Inibidores da Captação de Dopamina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor trkB/antagonistas & inibidores , Receptor trkB/farmacologia , Esquema de Reforço , Autoadministração , Sacarose/farmacologia , Edulcorantes/farmacologia
20.
Biol Psychiatry ; 84(8): 601-610, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29861097

RESUMO

BACKGROUND: Cannabis is the most widely used illicit drug, but knowledge of the neurological consequences of cannabis use is deficient. Two primary components of cannabis are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). We established a THC+CBD model of self-administration and reinstated drug seeking to determine if, similar to other addictive drugs, cannabis produces enduring synaptic changes in nucleus accumbens core (NAcore) thought to contribute vulnerability to drug reinstatement. METHODS: Sprague Dawley rats were trained to self-administer THC+CBD (n = 165) or were used as vehicle self-administering control animals (n = 24). Reinstatement was initiated by context, cues, drug priming, and stress (yohimbine injection). Enduring neuroadaptations produced by THC+CBD self-administration were assayed using four measures: dendritic spine morphology, long-term depression, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate ratios, and behavioral pharmacology. RESULTS: We described a novel rodent model of cannabis relapse involving intravenous THC+CBD self-administration and drug seeking induced by conditioned context, cues, and stress. Cued reinstatement of THC+CBD seeking depended on a sequence of events implicated in relapse to other addictive drugs, as reinstatement was prevented by daily treatment with N-acetylcysteine or acute intra-NAcore pretreatment with a neuronal nitric oxide synthase or matrix metalloprotease-9 inhibitor, all of which normalize impaired glutamate homeostasis. The capacity to induce N-methyl-D-aspartate long-term depression in NAcore medium spiny neurons was abolished and dendritic spine density was reduced, but alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate ratio was unaltered in THC+CBD-trained animals, akin to opioids, but not to psychostimulants. CONCLUSIONS: We report enduring consequences of THC+CBD use on critical relapse circuitry and synaptic physiology in NAcore following rat self-administration and provide the first report of cue- and stress-induced reinstatement with this model.


Assuntos
Canabidiol/administração & dosagem , Dronabinol/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Sinais (Psicologia) , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Comportamento de Procura de Droga/fisiologia , Masculino , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...