Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Archaeol Prospect ; 28(2): 187-199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239283

RESUMO

Historical maps present a unique depiction of past landscapes, providing evidence for a wide range of information such as settlement distribution, past land use, natural resources, transport networks, toponymy and other natural and cultural data within an explicitly spatial context. Maps produced before the expansion of large-scale mechanized agriculture reflect a landscape that is lost today. Of particular interest to us is the great quantity of archaeologically relevant information that these maps recorded, both deliberately and incidentally. Despite the importance of the information they contain, researchers have only recently begun to automatically digitize and extract data from such maps as coherent information, rather than manually examine a raster image. However, these new approaches have focused on specific types of information that cannot be used directly for archaeological or heritage purposes. This paper provides a proof of concept of the application of deep learning techniques to extract archaeological information from historical maps in an automated manner. Early twentieth century colonial map series have been chosen, as they provide enough time depth to avoid many recent large-scale landscape modifications and cover very large areas (comprising several countries). The use of common symbology and conventions enhance the applicability of the method. The results show deep learning to be an efficient tool for the recovery of georeferenced, archaeologically relevant information that is represented as conventional signs, line-drawings and text in historical maps. The method can provide excellent results when an adequate training dataset has been gathered and is therefore at its best when applied to the large map series that can supply such information. The deep learning approaches described here open up the possibility to map sites and features across entire map series much more quickly and coherently than other available methods, opening up the potential to reconstruct archaeological landscapes at continental scales.

2.
Proc Natl Acad Sci U S A ; 117(31): 18240-18250, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690717

RESUMO

This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper implements a multisensor, multitemporal machine-learning approach for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection of synthetic-aperture radar and multispectral images has been implemented in Google Earth Engine, resulting in an accurate probability map for mound-like signatures across an area that covers ca 36,000 km2 The results show that the area presents many more archaeological mounds than previously recorded, extending south and east into the desert, which has major implications for understanding the archaeological significance of the region. The detection of small (<5 ha) to large mounds (>30 ha) suggests that there were continuous shifts in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological network and the influence of the progressive northward advance of the desert in a long-term process that culminated in the abandonment of much of the settled area during the Late Harappan period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...