Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(5)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39121890

RESUMO

This study delves into the potential of amorphous titanium oxide (aTiO2) nano-coating to enhance various critical aspects of non-Ti-based metallic orthopedic implants. These implants, such as medical-grade stainless steel (SS), are widely used for orthopedic devices that demand high strength and durability. The aTiO2nano-coating, deposited via magnetron sputtering, is a unique attempt to improve the osteogenesis, the inflammatory response, and to reduce bacterial colonization on SS substrates. The study characterized the nanocoated surfaces (SS-a TiO2) in topography, roughness, wettability, and chemical composition. Comparative samples included uncoated SS and sandblasted/acid-etched Ti substrates (Ti). The biological effects were assessed using human mesenchymal stem cells (MSCs) and primary murine macrophages. Bacterial tests were carried out with two aerobic pathogens (S. aureusandS. epidermidis) and an anaerobic bacterial consortium representing an oral dental biofilm. Results from this study provide strong evidence of the positive effects of the aTiO2nano-coating on SS surfaces. The coating enhanced MSC osteoblastic differentiation and exhibited a response similar to that observed on Ti surfaces. Macrophages cultured on aTiO2nano-coating and Ti surfaces showed comparable anti-inflammatory phenotypes. Most significantly, a reduction in bacterial colonization across tested species was observed compared to uncoated SS substrates, further supporting the potential of aTiO2nano-coating in biomedical applications. The findings underscore the potential of magnetron-sputtering deposition of aTiO2nano-coating on non-Ti metallic surfaces such as medical-grade SS as a viable strategy to enhance osteoinductive factors and decrease pathogenic bacterial adhesion. This could significantly improve the performance of metallic-based biomedical devices beyond titanium.


Assuntos
Materiais Revestidos Biocompatíveis , Macrófagos , Teste de Materiais , Células-Tronco Mesenquimais , Osteogênese , Aço Inoxidável , Propriedades de Superfície , Titânio , Titânio/química , Aço Inoxidável/química , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Macrófagos/metabolismo , Osteogênese/efeitos dos fármacos , Diferenciação Celular , Próteses e Implantes , Osteoblastos/citologia , Staphylococcus aureus/efeitos dos fármacos , Biofilmes , Staphylococcus epidermidis/efeitos dos fármacos , Aderência Bacteriana , Molhabilidade
2.
J Biomed Mater Res B Appl Biomater ; 109(7): 1017-1028, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33252193

RESUMO

This study reports the differences in the protein composition of salivary pellicles formed under in situ conditions on two Titanium (Ti) surfaces, with different roughness and wettability. Smooth pretreatment Ti surfaces (Ti-PT) with an average roughness (Ra) of 0.45 µm and a water contact angle (WCA) of 92.4°, as well as a more rough sandblasted, large grit, acid-etched treatment Ti surfaces (Ti-SLA) with a Ra of 3.3 µm and WCA of 131.8°, were tested. The salivary pellicles were quantitatively analyzed by bicinchoninic acid assays, and the protein identification was performed by Nano-LC-MS/MS (nano mass spectrometry). Protein levels of 2.5, and 9.1 µg/ml were quantified from the detached salivary pellicle formed on the Ti-PT and Ti-SLA surfaces, respectively. Using Nano-LC-MS/MS, a total of 597 proteins were identified on all the substrates tested; 43 proteins were identified only on the Ti-PT, and 226 proteins were adsorbed solely on the Ti-SLA substrates. The physicochemical characteristics of the Ti implant surfaces modified the amount and the identity of the salivary proteome of the pellicles formed, confirming the high selectivity of the protein pellicle formed on a surface once is exposed in the oral cavity.


Assuntos
Película Dentária/química , Próteses e Implantes , Titânio/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA