Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 75(2): 353-368, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490644

RESUMO

BACKGROUND AND AIMS: Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS: In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS: Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Hepatopatias Alcoólicas/fisiopatologia , Fígado/fisiopatologia , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Vasos Sanguíneos/metabolismo , Doença Crônica , Progressão da Doença , Expressão Gênica , Ontologia Genética , Hepatite Alcoólica/patologia , Hepatite Alcoólica/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Camundongos , Neovascularização Patológica/patologia , Neovascularização Fisiológica/genética , Proteínas do Tecido Nervoso/metabolismo , Organoides , Gravidade do Paciente , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Células-Tronco , Regulação para Cima , Remodelação Vascular , Cicatrização , Proteínas Roundabout
2.
Mol Metab ; 54: 101388, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774811

RESUMO

OBJECTIVE: Obesity represents a growing health problem that is reaching pandemic dimensions and lacks effective cures, thus highlighting an urgent need for better mechanistic understanding and new therapeutic strategies. Unlike transcription, the function of translation in obesity has hardly been investigated. Here, we fill this knowledge gap by pinpointing a crucial function for gene regulation at the step of translation in diet-induced obesity. METHODS: We performed studies with human adipose tissue, high-fat-diet-induced obese mice and rats, CPEB4-knockout mice, and adipocyte lines. Cells were transfected with small-interfering RNAs that knockdown CPEB4. Transcriptome-wide identification and validation of CPEB4 targets in adipocytes were obtained by RNA-protein coimmunoprecipitation and high-throughput sequencing. The effect of CPEB4 depletion on high-fat-diet-induced dysbiosis was determined by 16S ribosomal-RNA gene sequencing and microbiome bioinformatics. RESULTS: We show that cytoplasmic polyadenylation element-binding protein 4 (CPEB4), which controls the translation of specific mRNAs by modulating their poly(A) tails, is highly expressed in visceral fat of obese but not lean humans and rodents (mice and rats), where it orchestrates an essential post-transcriptional reprogramming for aggravation of high-fat-diet-induced obesity. Mechanistically, CPEB4 overexpression in obese adipocytes activates the translation of factors essential for adipose tissue expansion (Cebpb, Stat5a) and adipocyte-intrinsic immune-like potential (Ccl2, Tlr4), as demonstrated by RNA-immunoprecipitation and high-throughput sequencing and experimentally validated in vivo. Consistently blocking CPEB4 production in knockout mice protects against diet-induced body weight gain and reduces adipose tissue enlargement and inflammation. In addition, the depletion of CPEB4 specifically in obese adipocytes using short hairpin RNAs decreases cell differentiation, lipid accumulation, and the proinflammatory and migratory capacity of macrophages. The absence of CPEB4 also attenuates high-fat diet-induced dysbiosis, shaping the microbiome composition toward a more beneficial profile, as shown by microbiome bioinformatics analysis. CONCLUSION: Our study identifies CPEB4 as a driver and therapeutic target to combat obesity.


Assuntos
Disbiose/metabolismo , Obesidade/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adulto , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Obesidade/microbiologia , Poliadenilação
3.
Cancers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008212

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.

4.
J Hepatol ; 74(5): 1064-1074, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278456

RESUMO

BACKGROUND & AIMS: Factors associated with a successful outcome upon nucleos(t)ide analogue (NA) treatment withdrawal in HBeAg-negative chronic hepatitis B (CHB) patients have yet to be clarified. The objective of this study was to analyse the HBV-specific T cell response, in parallel with peripheral and intrahepatic viral parameters, in patients undergoing NA discontinuation. METHODS: Twenty-seven patients without cirrhosis with HBeAg-negative CHB with complete viral suppression (>3 years) were studied prospectively. Intrahepatic HBV-DNA (iHBV-DNA), intrahepatic HBV-RNA (iHBV-RNA), and covalently closed circular DNA (cccDNA) were quantified at baseline. Additionally, serum markers (HBV-DNA, HBsAg, HBV core-related antigen [HBcrAg] and HBV-RNA) and HBV-specific T cell responses were analysed at baseline and longitudinally throughout follow-up. RESULTS: After a median follow-up of 34 months, 22/27 patients (82%) remained off-therapy, of whom 8 patients (30% of the total cohort) lost HBsAg. Baseline HBsAg significantly correlated with iHBV-DNA and iHBV-RNA, and these parameters were lower in patients who lost HBsAg. All patients had similar levels of detectable cccDNA regardless of their clinical outcome. Patients achieving functional cure had baseline HBsAg levels ≤1,000 IU/ml. Similarly, an increased frequency of functional HBV-specific CD8+ T cells at baseline was associated with sustained viral control off treatment. These HBV-specific T cell responses persisted, but did not increase, after treatment withdrawal. A similar, but not statistically significant trend, was observed for HBV-specific CD4+ T cell responses. CONCLUSIONS: Decreased cccDNA transcription and low HBsAg levels are associated with HBsAg loss upon NA discontinuation in patients with HBeAg-negative CHB. The presence of functional HBV-specific T cells at baseline are associated with a successful outcome after treatment withdrawal. LAY SUMMARY: Nucleos(t)ide analogue therapy can be discontinued in a high proportion of chronic hepatitis B patients without cirrhosis. The strength of HBV-specific immune T cell responses may contribute to successful viral control after antiviral treatment interruption. Our comprehensive study provides in-depth data on virological and immunological factors than can help guide individualised therapy in patients with chronic hepatitis B.


Assuntos
DNA Viral/isolamento & purificação , Antígenos da Hepatite B , Vírus da Hepatite B , Hepatite B Crônica , Imunidade Celular , Fígado , Nucleosídeos/uso terapêutico , Suspensão de Tratamento/estatística & dados numéricos , Antivirais/uso terapêutico , Biomarcadores/sangue , DNA Circular/isolamento & purificação , Feminino , Antígenos da Hepatite B/análise , Antígenos da Hepatite B/isolamento & purificação , Antígenos de Superfície da Hepatite B/análise , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/sangue , Hepatite B Crônica/diagnóstico , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Fígado/patologia , Fígado/virologia , Masculino , Pessoa de Meia-Idade , Planejamento de Assistência ao Paciente
5.
Sci Rep ; 7(1): 14791, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093528

RESUMO

Development of portosystemic collateral vessels and gastroesophageal varices is responsible for the most serious clinical consequences of portal hypertension, but effective clinical therapies are limited. Here we developed and investigated the therapeutic potential of an innovative liposomally-formulated short-interfering RNA (siRNA) technology based on clinical stage components, capable to attenuate production of the endothelial kinase insert domain receptor (KDR), which controls portosystemic collateralization and contributes to disease progression and aggravation. These siRNAs were first validated in vitro, and then, their therapeutic potential on portosystemic collateralization and pathological angiogenesis was tested in vivo in mouse models of portal hypertension (portal vein-ligation). siRNAKDR-lipoplexes efficiently transported siRNAKDR to vascular endothelial cells in mesenteric microvenules and portal vein of portal hypertensive mice, where collaterogenesis and angiogenesis take place. This systemic treatment significantly downregulated pathological KDR overexpression, without causing complete KDR knockout, preserving homeostatic baseline KDR levels and thus limiting adverse effects. siRNAKDR-lipoplex-induced endothelial-specific KDR knockdown drastically reduced by 73% the portosystemic collateralization, and impaired the pathologic angiogenic potential of vascular endothelial cells at different levels (cell proliferation, sprouting and remodeling). Targeting endothelial KDR with therapeutic siRNAKDR-lipoplexes could be a promising and plausible treatment modality for attenuating the formation of portosystemic collaterals in a clinical setting.


Assuntos
Endotélio Vascular , Hipertensão Portal , Neovascularização Patológica , RNA Interferente Pequeno , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Hipertensão Portal/genética , Hipertensão Portal/metabolismo , Hipertensão Portal/patologia , Hipertensão Portal/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
6.
Gut ; 66(7): 1306-1320, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26984852

RESUMO

OBJECTIVE: Pathological neovascularisation is intimately involved in portal hypertension (PH). Here, we determined the contribution of vascular stem/progenitor cells (VSPCs) to neovessel growth in PH and whether the RNA-binding protein cytoplasmic polyadenylation element binding protein-4 (CPEB4) was behind the mechanism controlling VSPC function. DESIGN: To identify and monitor VSPCs in PH rats (portal vein-ligated), we used a combinatorial approach, including sphere-forming assay, assessment of self-renewal, 5-bromo-2'-desoxyuridine label retention technique, in vitro and in vivo stem/progenitor cell (SPC) differentiation and vasculogenic capability, cell sorting, as well as immunohistochemistry, immunofluorescence and confocal microscopy expression analysis. We also determined the role of CPEB4 on VSPC proliferation using genetically engineered mouse models. RESULTS: We demonstrated the existence in the mesenteric vascular bed of VSPCs displaying capability to form cellular spheres in suspension culture, self-renewal ability, expression of molecules commonly found in SPCs, slow-cycling features, in addition to other cardinal properties exhibited by SPCs, like capacity to differentiate into endothelial cells and pericytes with remarkable vasculogenic activity. Such VSPCs showed, after PH induction, an early switch in proliferation, and differentiated in vivo into endothelial cells and pericytes, contributing, structurally and functionally, to abnormal neovessel formation. Quantification of VSPC-dependent neovessel formation in PH further illustrated the key role played by VSPCs. We also demonstrated that CPEB4 regulates the proliferation of the activated VSPC progeny upon PH induction. CONCLUSIONS: These findings demonstrate that VSPC-derived neovessel growth (ie, vasculogenesis) and angiogenesis cooperatively stimulate mesenteric neovascularisation in PH and identify VSPC and CPEB4 as potential therapeutic targets.


Assuntos
Hipertensão Portal/patologia , Neovascularização Patológica , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Ratos
7.
Gastroenterology ; 150(4): 982-97.e30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26627607

RESUMO

BACKGROUND & AIMS: Vascular endothelial growth factor (VEGF) regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, we investigated the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease. METHODS: We obtained transjugular liver biopsies from patients with hepatitis C virus-associated cirrhosis or liver tissues removed during transplantation; healthy human liver tissue was obtained from a commercial source (control). We also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation, and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis, reverse transcription polymerase chain reaction, polyA tail, 3' rapid amplification of complementary DNA ends, Southern blot, immunoblot, histologic, immunohistochemical, immunofluorescence, and confocal microscopy assays. CPEB was knocked down with small interfering RNAs in H5V endothelial cells, and translation of luciferase reporters constructs was assessed. RESULTS: Activation of CPEB1 promoted alternative nuclear processing within noncoding 3'-untranslated regions of VEGF and CPEB4 messenger RNAs in H5V cells, resulting in deletion of translation repressor elements. The subsequent overexpression of CPEB4 promoted cytoplasmic polyadenylation of VEGF messenger RNA, increasing its translation; the high levels of VEGF produced by these cells led to their formation of tubular structures in Matrigel assays. We observed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension after portal vein ligation. CONCLUSIONS: We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.


Assuntos
Hipertensão Portal/metabolismo , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática/metabolismo , Neovascularização Patológica , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Regiões 3' não Traduzidas , Adulto , Animais , Estudos de Casos e Controles , Linhagem Celular , Doença Crônica , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Hipertensão Portal/genética , Hipertensão Portal/patologia , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Poliadenilação , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transfecção , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética
8.
Gut ; 64(4): 657-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24848263

RESUMO

OBJECTIVE: Antiangiogenic strategies have been proposed as a promising new approach for the therapy of portal hypertension and chronic liver disease. Pigment epithelium-derived factor (PEDF) is a powerful endogenous angiogenesis inhibitor whose role in portal hypertension remains unknown. Therefore, we aimed at determining the involvement of PEDF in cirrhotic portal hypertension and the therapeutic efficacy of its supplementation. DESIGN: PEDF expression profiling and its relationship with vascular endothelial growth factor (VEGF), neovascularisation and fibrogenesis was determined in bile duct-ligated (BDL) rats and human cirrhotic livers. The ability of exogenous PEDF overexpression by adenovirus-mediated gene transfer (AdPEDF) to inhibit angiogenesis, fibrogenesis and portal pressure was also evaluated in BDL rats, following prevention and intervention trials. RESULTS: PEDF was upregulated in cirrhotic human and BDL rat livers. PEDF and VEGF protein expression and localisation in mesentery and liver increased in parallel with portal hypertension progression, being closely linked in time and space with mesenteric neovascularisation and liver fibrogenesis in BDL rats. Furthermore, AdPEDF increased PEDF bioavailability in BDL rats, shifting the net balance in the local abundance of positive (VEGF) and negative (PEDF) angiogenesis drivers in favour of attenuation of portal hypertension-associated pathological neovascularisation. The antiangiogenic effects of AdPEDF targeted only pathological angiogenesis, without affecting normal vasculature, and were observed during early stages of disease. AdPEDF also significantly decreased liver fibrogenesis (through metalloproteinase upregulation), portosystemic collateralisation and portal pressure in BDL rats. CONCLUSIONS: This study provides compelling experimental evidence indicating that PEDF could be a novel therapeutic agent worthy of assessment in portal hypertension and cirrhosis.


Assuntos
Proteínas do Olho/fisiologia , Proteínas do Olho/uso terapêutico , Hipertensão Portal/etiologia , Hipertensão Portal/prevenção & controle , Cirrose Hepática/prevenção & controle , Neovascularização Patológica/prevenção & controle , Fatores de Crescimento Neural/fisiologia , Fatores de Crescimento Neural/uso terapêutico , Serpinas/fisiologia , Serpinas/uso terapêutico , Animais , Ductos Biliares , Humanos , Ligadura , Masculino , Pressão na Veia Porta , Ratos , Ratos Sprague-Dawley
9.
Hepatology ; 60(2): 633-47, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24390792

RESUMO

UNLABELLED: Pathological angiogenesis represents a critical hallmark for chronic liver diseases. Understanding the mechanisms regulating angiogenesis is essential to develop new therapeutic strategies that specifically target pathological angiogenesis without affecting physiological angiogenesis. Here we investigated the contribution and therapeutic impact of the endogenous angioinhibitor vasohibin-1 in portal hypertension and cirrhosis. The spatiotemporal expression profiling of vasohibin-1 and its relationship with vascular endothelial growth factor (VEGF), angiogenesis, and fibrogenesis was determined through the analysis of human cirrhotic liver specimens, widely accepted in vivo animal models of portal hypertension and cirrhosis, and in vitro angiogenesis assays. Effects of vasohibin-1 overexpression by adenoviral-mediated gene transfer on angiogenesis, fibrogenesis, and portal hypertension-associated hemodynamic alterations were also studied in rats. We found that vasohibin-1 and VEGF are up-regulated, in mesentery and liver, in cirrhotic and precirrhotic portal hypertensive rats and cirrhosis patients. Our results are consistent with vasohibin-1/VEGF cascades being spatially and temporally coordinated through a negative-feedback loop driving pathological angiogenesis. Paradoxically, further overexpression of vasohibin-1 by adenoviral gene transfer exerts multifold beneficial effects in portal hypertension and cirrhosis: reduction of pathologic angiogenesis, attenuation of liver fibrogenesis partly mediated through inhibition of hepatic stellate cell activation, and significant decreases in portocollateralization, splanchnic blood flow, portohepatic resistance, and portal pressure. The explanation for this apparent contradiction is that, unlike endogenous vasohibin-1, the ectopic overexpression is not regulated by VEGF and therefore disrupts the negative-feedback loop, thus generating constant, but lower levels of VEGF synthesis sufficient to maintain vascular homeostasis but not pathological angiogenesis. CONCLUSION: Our study provides evidence that vasohibin-1 regulates portal hypertension-associated pathological angiogenesis and highlights that increasing vasohibin-1 might be a promising novel therapeutic strategy for portal hypertension and cirrhosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cirrose Hepática/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenoviridae/genética , Animais , Proteínas de Ciclo Celular/genética , Doença Crônica , Retroalimentação Fisiológica/fisiologia , Expressão Gênica/fisiologia , Células Estreladas do Fígado/metabolismo , Homeostase/fisiologia , Humanos , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Hipertensão Portal/metabolismo , Hipertensão Portal/fisiopatologia , Cirrose Hepática/fisiopatologia , Masculino , Neovascularização Patológica/fisiopatologia , Ratos , Ratos Sprague-Dawley , Circulação Esplâncnica/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética
10.
J Hepatol ; 52(4): 529-39, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20206401

RESUMO

BACKGROUND & AIMS: Splenomegaly is a frequent hallmark of portal hypertension that, in some cases, can be very prominent and cause symptoms like abdominal pain, splenic infarction, and cytopenia. This study characterizes the pathogenetic mechanisms leading to spleen enlargement in portal hypertensive rats and focuses on mTOR pathway as a potential modulator of splenomegaly in portal hypertension. METHODS: Characterization of splenomegaly was performed by histological, hematological, immunohistochemical and Western blot analyses in rats with portal hypertension induced by portal vein ligation, and compared with sham-operated animals. The contribution of the mTOR signaling pathway to splenomegaly was determined in rats with fully developed portal hypertension and control rats by treatment with rapamycin or vehicle. RESULTS: Our results illustrate that splenomegaly in portal hypertensive rats arises as a consequence of the interplay of several factors, including not only spleen congestion, as traditionally thought, but also enlargement and hyperactivation of the splenic lymphoid tissue, as well as increased angiogenesis and fibrogenesis. Since mTOR signaling plays a central role in immunological processes, angiogenesis and fibrogenesis, we next determined the involvement of mTOR in splenomegaly. Interestingly, mTOR signaling was overactivated in the spleen of portal hypertensive rats, and mTOR blockade by rapamycin profoundly ameliorated splenomegaly, causing a 44% decrease in spleen size. This effect was most likely accounted for the inhibitory action of rapamycin on lymphocyte proliferation, neovascularization and fibrosis. CONCLUSIONS: These findings shed light on the pathogenesis of splenomegaly in portal hypertension, and identify mTOR signaling as a potential target for therapeutic intervention in this disease.


Assuntos
Hipertensão Portal/metabolismo , Hipertensão Portal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Esplenomegalia/metabolismo , Esplenomegalia/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/imunologia , Fibrose , Hematócrito , Hipertensão Portal/tratamento farmacológico , Imunossupressores/farmacologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Masculino , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Baço/irrigação sanguínea , Baço/metabolismo , Baço/patologia , Esplenomegalia/tratamento farmacológico , Serina-Treonina Quinases TOR
11.
Hepatology ; 49(4): 1245-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19137587

RESUMO

UNLABELLED: Portal hypertension, the most important complication in patients with cirrhosis of the liver, is a serious and life-threatening disease for which there are few therapeutic options. Because angiogenesis is a pathological hallmark of portal hypertension, the goal of this study was to determine the effects of sorafenib-a potent inhibitor of proangiogenic vascular endothelial growth factor receptor 2 (VEGFR-2), platelet-derived growth factor receptor beta (PDGFR-beta), and Raf kinases-on splanchnic, intrahepatic, systemic, and portosystemic collateral circulations in two different experimental models of portal hypertension: rats with prehepatic portal hypertension induced by partial portal vein ligation and rats with intrahepatic portal hypertension and secondary biliary cirrhosis induced by bile duct ligation. Such a comprehensive approach is necessary for any translational research directed toward defining the efficacy and potential clinical application of new therapeutic agents. Sorafenib administered orally once a day for 2 weeks in experimental models of portal hypertension and cirrhosis effectively inhibited VEGF, PDGF, and Raf signaling pathways, and produced several protective effects by inducing an approximately 80% decrease in splanchnic neovascularization and a marked attenuation of hyperdynamic splanchnic and systemic circulations, as well as a significant 18% decrease in the extent of portosystemic collaterals. In cirrhotic rats, sorafenib treatment also resulted in a 25% reduction in portal pressure, as well as a remarkable improvement in liver damage and intrahepatic fibrosis, inflammation, and angiogenesis. Notably, beneficial effects of sorafenib against tissue damage and inflammation were also observed in splanchnic organs. CONCLUSION: Taking into account the limitations of translating animal study results into humans, we believe that our findings will stimulate consideration of sorafenib as an effective therapeutic agent in patients suffering from advanced portal hypertension.


Assuntos
Benzenossulfonatos/uso terapêutico , Hipertensão Portal/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Circulação Esplâncnica/efeitos dos fármacos , Animais , Benzenossulfonatos/farmacologia , Circulação Colateral/efeitos dos fármacos , Enterite/tratamento farmacológico , Enterite/etiologia , Heme Oxigenase-1/metabolismo , Hepatite/tratamento farmacológico , Hepatite/etiologia , Hipertensão Portal/etiologia , Fígado/metabolismo , Cirrose Hepática/complicações , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Niacinamida/análogos & derivados , Óxido Nítrico Sintase Tipo III/metabolismo , Compostos de Fenilureia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Sorafenibe
12.
J Hepatol ; 50(2): 296-305, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19070926

RESUMO

BACKGROUND/AIMS: Angiogenesis is a pathological hallmark of portal hypertension. Although VEGF is considered to be the most important proangiogenic factor in neoangiogenesis, this process requires the coordinated action of a variety of factors. Identification of novel molecules involved in angiogenesis is highly relevant, since they may represent potential new targets to suppress pathological neovascularization in angiogenesis-related diseases like portal hypertension. The apelin/APJ signaling pathway plays a crucial role in angiogenesis. Therefore, we determined whether the apelin system modulates angiogenesis-driven processes in portal hypertension. METHODS: Partial portal vein-ligated rats were treated with the APJ antagonist F13A for seven days. Splanchnic neovascularization and expression of angiogenesis mediators (Western blotting) was determined. Portosystemic collateral formation (microspheres), and hemodynamic parameters (flowmetry) were also assessed. RESULTS: Apelin and its receptor APJ were overexpressed in the splanchnic vasculature of portal hypertensive rats. F13A effectively decreased, by 52%, splanchnic neovascularization and expression of proangiogenic factors VEGF, PDGF and angiopoietin-2 in portal hypertensive rats. F13A also reduced, by 35%, the formation of portosystemic collateral vessels. CONCLUSIONS: This study provides the first experimental evidence showing that the apelin/APJ system contributes to portosystemic collateralization and splanchnic neovascularization in portal hypertensive rats, presenting a potential novel therapeutic target for portal hypertension.


Assuntos
Proteínas de Transporte/fisiologia , Neovascularização Fisiológica , Sistema Porta/fisiopatologia , Transdução de Sinais/fisiologia , Circulação Esplâncnica , Animais , Apelina , Receptores de Apelina , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Circulação Colateral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Heme Oxigenase (Desciclizante)/genética , Hipertensão Portal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Cadeias Leves de Miosina/genética , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
13.
J Cell Mol Med ; 12(5A): 1690-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18194463

RESUMO

BACKGROUND: Angiogenesis is an important determinant of the pathophysiology of portal hypertension contributing to the formation of portosystemic collateral vessels and the hyperdynamic splanchnic circulation associated to this syndrome. Somatostatin and its analogues, like octreotide, have been shown to be powerful inhibitors of experimental angiogenesis. AIM: To determine whether octreotide has angioinhibitory effects in portal hypertensive rats. METHODS: Partial portal vein-ligated (PPVL) rats were treated with octreotide or vehicle during 4 or 7 days. Splanchnic neovascularization and VEGF expression were determined by histological analysis and western blotting. Expression of the somatostatin receptor subtype 2 (SSTR2), which mediates the anti-angiogenic effects of octreotide, was also analyzed. Formation of portosystemic collaterals (radioactive microspheres) and hemodynamic parameters were also measured. RESULTS: Octreotide treatment during 4 days markedly and significantly decreased splanchnic neovascularization, VEGF expression by 63% and portal pressure by 15%, whereas portosystemic collateralization and splanchnic blood flow were not modified. After 1 week of octreotide injection, portal pressure was reduced by 20%, but inhibition of angiogenesis escaped from octreotide therapy, a phenomenon that could be related to the finding that expression of SSTR2 receptor decreased progressively (up to 78% reduction) during the evolution of portal hypertension. CONCLUSION: This study provides the first experimental evidence showing that octreotide may be an effective anti-angiogenic therapy early after induction of portal hypertension, but not in advanced stages most likely due to SSTR2 down-regulation during the progression of portal hypertension in rats. These findings shed light on new mechanisms of action of octreotide in portal hypertension.


Assuntos
Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/patologia , Neovascularização Patológica/tratamento farmacológico , Octreotida/uso terapêutico , Somatostatina/análogos & derivados , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hemodinâmica/efeitos dos fármacos , Hipertensão Portal/genética , Hipertensão Portal/metabolismo , Masculino , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Octreotida/química , Ratos , Ratos Sprague-Dawley , Receptores de Somatostatina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Hepatology ; 46(4): 1208-17, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17654489

RESUMO

UNLABELLED: Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) pathways are crucial to angiogenesis, a process that contributes significantly to the pathogenesis of portal hypertension. This study determined the effects of inhibition of VEGF and/or PDGF signaling on hyperdynamic splanchnic circulation and portosystemic collateralization in rats with completely established portal hypertension, thus mimicking the situation in patients. Portal vein-ligated rats were treated with rapamycin (VEGF signaling inhibitor), Gleevec (PDGF signaling inhibitor), or both simultaneously when portal hypertension was already fully developed. Hemodynamic studies were performed by transit-time flowmetry. The extent of portosystemic collaterals was measured by radioactive microspheres. The expression of angiogenesis mediators was determined by Western blotting and immunohistochemistry. Combined inhibition of VEGF and PDGF signaling significantly reduced splanchnic neovascularization (i.e., CD31 and VEGFR-2 expression) and pericyte coverage of neovessels (that is, alpha-smooth muscle actin and PDGFR-beta expression) and translated into hemodynamic effects as marked as a 40% decrease in portal pressure, a 30% decrease in superior mesenteric artery blood flow, and a 63% increase in superior mesenteric artery resistance, yielding a significant reversal of the hemodynamic changes provoked by portal hypertension in rats. Portosystemic collateralization was reduced as well. CONCLUSIONS: Our results provide new insights into how angiogenesis regulates portal hypertension by demonstrating that the maintenance of increased portal pressure, hyperkinetic circulation, splanchnic neovascularization, and portosystemic collateralization is regulated by VEGF and PDGF in portal hypertensive rats. Importantly, these findings also suggest that an extended antiangiogenic strategy (that is, targeting VEGF/endothelium and PDGF/pericytes) may be a novel approach to the treatment of portal hypertension.


Assuntos
Hipertensão Portal/fisiopatologia , Neovascularização Patológica/metabolismo , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Circulação Esplâncnica/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Benzamidas , Modelos Animais de Doenças , Quimioterapia Combinada , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Mesilato de Imatinib , Imunossupressores/uso terapêutico , Ligadura , Masculino , Artéria Mesentérica Superior/fisiopatologia , Neovascularização Patológica/tratamento farmacológico , Piperazinas/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/metabolismo , Veia Porta/fisiopatologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/fisiologia , Transdução de Sinais/fisiologia , Sirolimo/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Heart Lung Transplant ; 25(9): 1117-25, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16962475

RESUMO

BACKGROUND: The activation of the renin-angiotensin system (RAS) contributes to the progression of left ventricular dysfunction. A novel human homologue of the angiotensin-converting enzyme (ACE), named ACE2, has been described but its role in human heart failure (HF) has not been elucidated. Besides, there is controversy as to whether the major angiotensin II-forming-activity in heart is ACE or chymase released from mast cells. Furthermore, long-term blockade of nitric oxide (NO) synthesis has been shown to increase ACE activity. To assess the locally activated vasoactive mediators that may contribute to the ventricular deterioration process, we sought to simultaneously analyze their expression in failing hearts. METHODS: We analyzed left ventricular biopsies from 30 patients with heart failure undergoing heart transplantation and 12 organ donors. The mRNA levels of ACE, ACE2, chymase and endothelial nitric oxide synthase (eNOS), were quantified by real-time polymerase chain reaction and mast cell density was assessed by immunohistochemistry. The mRNA levels of the atrial natriuretic peptide (ANP) and the brain natriuretic peptide (BNP) were also quantified as controls. RESULTS: There was higher ACE and chymase mRNA expression and mast cell density in failing than in control myocardium and no changes in ACE2 expression were detected. eNOS mRNA levels were lower in failing hearts. Both ANP and BNP expression were higher in pathological than in control samples. CONCLUSIONS: These data document a decompensation of vasoactive systems that may contribute to the progressive impairment of the myocardial function in HF. On the other hand, ACE2 mRNA expression is not altered in human end-stage HF.


Assuntos
Baixo Débito Cardíaco/metabolismo , Baixo Débito Cardíaco/patologia , Mastócitos/patologia , Peptidil Dipeptidase A/genética , Sistema Renina-Angiotensina/fisiologia , Adulto , Idoso , Enzima de Conversão de Angiotensina 2 , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Biópsia , Baixo Débito Cardíaco/genética , Contagem de Células , Quimases , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Mastócitos/metabolismo , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sistema Renina-Angiotensina/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...