Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38112569

RESUMO

Mounting evidence suggests considerable diversity in brain aging trajectories, primarily arising from the complex interplay between age, genetic, and environmental risk factors, leading to distinct patterns of micro- and macro-cerebral aging. The underlying mechanisms of such effects still remain unclear. We conducted a comprehensive association analysis between cerebral structural measures and prevalent risk factors, using data from 36,969 UK Biobank subjects aged 44-81. Participants were assessed for brain volume, white matter diffusivity, Apolipoprotein E (APOE) genotypes, polygenic risk scores, lifestyles, and socioeconomic status. We examined genetic and environmental effects and their interactions with age and sex, and identified 726 signals, with education, alcohol, and smoking affecting most brain regions. Our analysis revealed negative age-APOE-ε4 and positive age-APOE-ε2 interaction effects, respectively, especially in females on the volume of amygdala, positive age-sex-APOE-ε4 interaction on the cerebellar volume, positive age-excessive-alcohol interaction effect on the mean diffusivity of the splenium of the corpus callosum, positive age-healthy-diet interaction effect on the paracentral volume, and negative APOE-ε4-moderate-alcohol interaction effects on the axial diffusivity of the superior fronto-occipital fasciculus. These findings highlight the need of considering age, sex, genetic, and environmental joint effects in elucidating normal or abnormal brain aging.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Feminino , Humanos , Envelhecimento/genética , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagem , Genótipo , Fatores de Risco
2.
Nat Aging ; 3(7): 894-907, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248328

RESUMO

Microglia, the innate immune cells of the brain, influence Alzheimer's disease (AD) progression and are potential therapeutic targets. However, microglia exhibit diverse functions, the regulation of which is not fully understood, complicating therapeutics development. To better define the transcriptomic phenotypes and gene regulatory networks associated with AD, we enriched for microglia nuclei from 12 AD and 10 control human dorsolateral prefrontal cortices (7 males and 15 females, all aged >60 years) before single-nucleus RNA sequencing. Here we describe both established and previously unrecognized microglial molecular phenotypes, the inferred gene networks driving observed transcriptomic change, and apply trajectory analysis to reveal the putative relationships between microglial phenotypes. We identify microglial phenotypes more prevalent in AD cases compared with controls. Further, we describe the heterogeneity in microglia subclusters expressing homeostatic markers. Our study demonstrates that deep profiling of microglia in human AD brain can provide insight into microglial transcriptional changes associated with AD.


Assuntos
Doença de Alzheimer , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Microglia , Perfilação da Expressão Gênica , Transcriptoma/genética , Encéfalo
3.
J Neuroinflammation ; 20(1): 60, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36879321

RESUMO

Alzheimer's Disease (AD) is characterized by the accumulation of extracellular amyloid-ß (Aß) as well as CNS and systemic inflammation. Microglia, the myeloid cells resident in the CNS, use microRNAs to rapidly respond to inflammatory signals. MicroRNAs (miRNAs) modulate inflammatory responses in microglia, and miRNA profiles are altered in Alzheimer's disease (AD) patients. Expression of the pro-inflammatory miRNA, miR-155, is increased in the AD brain. However, the role of miR-155 in AD pathogenesis is not well-understood. We hypothesized that miR-155 participates in AD pathophysiology by regulating microglia internalization and degradation of Aß. We used CX3CR1CreER/+ to drive-inducible, microglia-specific deletion of floxed miR-155 alleles in two AD mouse models. Microglia-specific inducible deletion of miR-155 in microglia increased anti-inflammatory gene expression while reducing insoluble Aß1-42 and plaque area. Yet, microglia-specific miR-155 deletion led to early-onset hyperexcitability, recurring spontaneous seizures, and seizure-related mortality. The mechanism behind hyperexcitability involved microglia-mediated synaptic pruning as miR-155 deletion altered microglia internalization of synaptic material. These data identify miR-155 as a novel modulator of microglia Aß internalization and synaptic pruning, influencing synaptic homeostasis in the setting of AD pathology.


Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Camundongos , Doença de Alzheimer/genética , Microglia , Peptídeos beta-Amiloides , Convulsões , Modelos Animais de Doenças , MicroRNAs/genética
4.
Nucleic Acids Res ; 51(D1): D1075-D1085, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318260

RESUMO

Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio), and a visualization and analysis platform, NeMO Analytics (nemoanalytics.org).


Assuntos
Encéfalo , Bases de Dados Genéticas , Epigenômica , Multiômica , Transcriptoma , Animais , Camundongos , Genômica , Mamíferos , Primatas , Encéfalo/citologia , Encéfalo/metabolismo
5.
Front Neurosci ; 17: 1321680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292900

RESUMO

Abnormal endo-lysosomal morphology is an early cytopathological feature of Alzheimer's disease (AD) and genome-wide association studies (GWAS) have implicated genes involved in the endo-lysosomal network (ELN) as conferring increased risk for developing sporadic, late-onset AD (LOAD). Characterization of ELN pathology and the underlying pathophysiology is a promising area of translational AD research and drug development. However, rigorous study of ELN vesicles in AD and aged control brains poses a unique constellation of methodological challenges due in part to the small size of these structures and subsequent requirements for high-resolution imaging. Here we provide a detailed protocol for high-resolution 3D morphological quantification of neuronal endosomes in postmortem AD brain tissue, using immunofluorescent staining, confocal imaging with image deconvolution, and Imaris software analysis pipelines. To demonstrate these methods, we present neuronal endosome morphology data from 23 sporadic LOAD donors and one aged non-AD control donor. The techniques described here were developed across a range of AD neuropathology to best optimize these methods for future studies with large cohorts. Application of these methods in research cohorts will help advance understanding of ELN dysfunction and cytopathology in sporadic AD.

6.
Biol Psychiatry Glob Open Sci ; 2(2): 180-189, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35441155

RESUMO

Background: Microglia have recently been implicated in opioid dependence and withdrawal. Mu Opioid (MOR) receptors are expressed in microglia, and microglia form intimate connections with nearby neurons. Accordingly, opioids have both direct (MOR mediated) and indirect (neuron-interaction mediated) effects on microglia function. Methods: To investigate this directly, we used RNA sequencing of ribosome-associated RNAs from striatal microglia (RiboTag-Seq) after the induction of morphine tolerance and followed by naloxone precipitated withdrawal (n=16). We validated the RNA-Seq data by combining fluorescent in-situ hybridization with immunohistochemistry for microglia (n=18). Finally, we expressed and activated the Gi/o-coupled hM4Di DREADD receptor in CX3CR1-expressing cells during morphine withdrawal (n=18). Results: We detected large, inverse changes in RNA translation following opioid tolerance and withdrawal. WGCNA analysis revealed an intriguing network of cAMP-associated genes that are known to be involved in microglial motility, morphology, and interactions with neurons that were downregulated with morphine tolerance and upregulated rapidly by withdrawal. Three-dimensional histological reconstruction of microglia allowed for volumetric, visual colocalization of mRNA within individual microglia that validated our bioinformatics results. Direct activation of Gi/o-coupled DREADD receptors in CX3CR1-expressing cells exacerbated signs of opioid withdrawal rather than mimicking the effects of morphine. Conclusions: These results indicate that Gi-signaling and cAMP-associated gene networks are inversely engaged during opioid tolerance and early withdrawal, perhaps revealing a role of microglia in mitigating the consequences of opioids.

7.
J Neurodev Disord ; 14(1): 24, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321655

RESUMO

BACKGROUND: Computational phenotypes are most often combinations of patient billing codes that are highly predictive of disease using electronic health records (EHR). In the case of rare diseases that can only be diagnosed by genetic testing, computational phenotypes identify patient cohorts for genetic testing and possible diagnosis. This article details the validation of a computational phenotype for PTEN hamartoma tumor syndrome (PHTS) against the EHR of patients at three collaborating clinical research centers: Boston Children's Hospital, Children's National Hospital, and the University of Washington. METHODS: A combination of billing codes from the International Classification of Diseases versions 9 and 10 (ICD-9 and ICD-10) for diagnostic criteria postulated by a research team at Cleveland Clinic was used to identify patient cohorts for genetic testing from the clinical data warehouses at the three research centers. Subsequently, the EHR-including billing codes, clinical notes, and genetic reports-of these patients were reviewed by clinical experts to identify patients with PHTS. RESULTS: The PTEN genetic testing yield of the computational phenotype, the number of patients who needed to be genetically tested for incidence of pathogenic PTEN gene variants, ranged from 82 to 94% at the three centers. CONCLUSIONS: Computational phenotypes have the potential to enable the timely and accurate diagnosis of rare genetic diseases such as PHTS by identifying patient cohorts for genetic sequencing and testing.


Assuntos
Testes Genéticos , Síndrome do Hamartoma Múltiplo , Registros Eletrônicos de Saúde , Síndrome do Hamartoma Múltiplo/diagnóstico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Humanos , PTEN Fosfo-Hidrolase/genética , Fenótipo
8.
Brain Commun ; 4(1): fcab309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35169706

RESUMO

Immunotherapy for haematologic malignancies with CD19-directed chimeric antigen receptor T cells has been highly successful at eradicating cancer but is associated with acute neurotoxicity in ∼40% of patients. This neurotoxicity correlates with systemic cytokine release syndrome, endothelial activation and disruption of endothelial integrity, but it remains unclear how these mechanisms interact and how they lead to neurologic dysfunction. We hypothesized that dysfunction of the neurovascular unit is a key step in the development of neurotoxicity. To recapitulate the interaction of the intact immune system with the blood-brain barrier, we first developed an immunocompetent mouse model of chimeric antigen receptor T-cell treatment-associated neurotoxicity. We treated wild-type mice with cyclophosphamide lymphodepletion followed by escalating doses of murine CD19-directed chimeric antigen receptor T cells. Within 3-5 days after chimeric antigen receptor T-cell infusion, these mice developed systemic cytokine release and abnormal behaviour as measured by daily neurologic screening exams and open-field testing. Histologic examination revealed widespread brain haemorrhages, diffuse extravascular immunoglobulin deposition, loss of capillary pericyte coverage and increased prevalence of string capillaries. To measure any associated changes in cerebral microvascular blood flow, we performed in vivo two-photon imaging through thinned-skull cranial windows. Unexpectedly, we found that 11.9% of cortical capillaries were plugged by Day 6 after chimeric antigen receptor T-cell treatment, compared to 1.1% in controls treated with mock transduced T cells. The capillary plugs comprised CD45+ leucocytes, a subset of which were CD3+ T cells. Plugging of this severity is expected to compromise cerebral perfusion. Indeed, we found widely distributed patchy hypoxia by hypoxyprobe immunolabelling. Increased serum levels of soluble ICAM-1 and VCAM-1 support a putative mechanism of increased leucocyte-endothelial adhesion. These data reveal that brain capillary obstruction may cause sufficient microvascular compromise to explain the clinical phenotype of chimeric antigen receptor T-cell neurotoxicity. The translational impact of this finding is strengthened by the fact that our mouse model closely approximates the kinetics and histologic findings of the chimeric antigen receptor T-cell neurotoxicity syndrome seen in human patients. This new link between systemic immune activation and neurovascular unit injury may be amenable to therapeutic intervention.

9.
J Neurosci ; 41(38): 7942-7953, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34380760

RESUMO

Microglia maintain brain health and play important roles in disease and injury. Despite the known ability of microglia to proliferate, the precise nature of the population or populations capable of generating new microglia in the adult brain remains controversial. We identified Prominin-1 (Prom1; also known as CD133) as a putative cell surface marker of committed brain myeloid progenitor cells. We demonstrate that Prom1-expressing cells isolated from mixed cortical cultures will generate new microglia in vitro To determine whether Prom1-expressing cells generate new microglia in vivo, we used tamoxifen inducible fate mapping in male and female mice. Induction of Cre recombinase activity at 10 weeks in Prom1-expressing cells leads to the expression of TdTomato in all Prom1-expressing progenitors and newly generated daughter cells. We observed a population of new TdTomato-expressing microglia at 6 months of age that increased in size at 9 months. When microglia proliferation was induced using a transient ischemia/reperfusion paradigm, little proliferation from the Prom1-expressing progenitors was observed with the majority of new microglia derived from Prom1-negative cells. Together, these findings reveal that Prom1-expressing myeloid progenitor cells contribute to the generation of new microglia both in vitro and in vivo Furthermore, these findings demonstrate the existence of an undifferentiated myeloid progenitor population in the adult mouse brain that expresses Prom1. We conclude that Prom1-expressing myeloid progenitors contribute to new microglia genesis in the uninjured brain but not in response to ischemia/reperfusion.SIGNIFICANCE STATEMENT Microglia, the innate immune cells of the CNS, can divide to slowly generate new microglia throughout life. Newly generated microglia may influence inflammatory responses to injury or neurodegeneration. However, the origins of the new microglia in the brain have been controversial. Our research demonstrates that some newly born microglia in a healthy brain are derived from cells that express the stem cell marker Prominin-1. This is the first time Prominin-1 cells are shown to generate microglia.


Assuntos
Antígeno AC133/metabolismo , Encéfalo/citologia , Diferenciação Celular/fisiologia , Microglia/citologia , Animais , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Feminino , Masculino , Camundongos , Microglia/metabolismo
10.
Glia ; 69(7): 1736-1748, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33694209

RESUMO

Microglia are the innate immune cells of the central nervous system that adopt rapid functional changes in response to Damage Associated Molecular Patterns, including aggregated ß-Amyloid (Aß) found in Alzheimer's disease (AD). microRNAs (miRNAs) are post-transcriptional modulators that influence the timing and magnitude of microglia inflammatory responses by downregulating the expression of inflammatory effectors. Recent studies implicate miR-155, a miRNA known to regulate inflammatory responses, in the pathogenesis of neurodegenerative disorders including multiple sclerosis, ALS, familial Parkinson's disease, and AD. In this work, we asked if miR-155 expression in microglia modifies cellular behaviors in response to fibrillar Aß1-42 (fAß1-42 ), in vitro. We hypothesized that in microglia, miR-155 expression would impact the internalization and catabolism of extracellular fAß1-42 . Primary microglia stimulated with lipopolysaccharide demonstrate fast upregulation of miR-155 followed by delayed upregulation of miR-146a, an anti-inflammatory miRNA. Conditional overexpression of miR-155 in microglia resulted in significant upregulation of miR-146a. Conditional deletion of miR-155 promoted transit of fAß1-42 to low-pH compartments where catabolism occurs, while miR-155 overexpression decreases fAß1-42 catabolism. Uptake of fAß1-42 across the plasma membrane increased with both up and downregulation of miR-155 expression. Taken together, our results support the hypothesis that inflammatory signaling influences the ability of microglia to catabolize fAß1-42 through interconnected mechanisms modulated by miR-155. Understanding how miRNAs modulate the ability of microglia to catabolize fAß1-42 will further elucidate the role of cellular players and molecular crosstalk in AD pathophysiology.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo
12.
Nat Commun ; 11(1): 5781, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188183

RESUMO

The temporal molecular changes that lead to disease onset and progression in Alzheimer's disease (AD) are still unknown. Here we develop a temporal model for these unobserved molecular changes with a manifold learning method applied to RNA-Seq data collected from human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq studies. We define an ordering across samples based on their similarity in gene expression and use this ordering to estimate the molecular disease stage-or disease pseudotime-for each sample. Disease pseudotime is strongly concordant with the burden of tau (Braak score, P = 1.0 × 10-5), Aß (CERAD score, P = 1.8 × 10-5), and cognitive diagnosis (P = 3.5 × 10-7) of late-onset (LO) AD. Early stage disease pseudotime samples are enriched for controls and show changes in basic cellular functions. Late stage disease pseudotime samples are enriched for late stage AD cases and show changes in neuroinflammation and amyloid pathologic processes. We also identify a set of late stage pseudotime samples that are controls and show changes in genes enriched for protein trafficking, splicing, regulation of apoptosis, and prevention of amyloid cleavage pathways. In summary, we present a method for ordering patients along a trajectory of LOAD disease progression from brain transcriptomic data.


Assuntos
Encéfalo/patologia , Degeneração Neural/patologia , Algoritmos , Doença de Alzheimer/patologia , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Degeneração Neural/genética , Córtex Pré-Frontal/patologia , Fatores de Tempo , Aprendizado de Máquina não Supervisionado
13.
J Alzheimers Dis ; 77(2): 675-688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741831

RESUMO

BACKGROUND: Early-onset familial Alzheimer disease (EOFAD) is caused by heterozygous variants in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes. Decades after their discovery, the mechanisms by which these genes cause Alzheimer's disease (AD) or promote AD progression are not fully understood. While it is established that presenilin (PS) enzymatic activity produces amyloid-ß (Aß), PSs also regulate numerous other cellular functions, some of which intersect with known pathogenic drivers of neurodegeneration. Accumulating evidence suggests that microglia, resident innate immune cells in the central nervous system, play a key role in AD neurodegeneration. OBJECTIVE: Previous work has identified a regulatory role for PS2 in microglia. We hypothesized that PSEN2 variants lead to dysregulated microglia, which could further contribute to disease acceleration. To mimic the genotype of EOFAD patients, we created a transgenic mouse expressing PSEN2 N141I on a mouse background expressing one wildtype PS2 and two PS1 alleles. RESULTS: Microglial expression of PSEN2 N141I resulted in impaired γ-secretase activity as well as exaggerated inflammatory cytokine release, NFκB activity, and Aß internalization. In vivo, PS2 N141I mice showed enhanced IL-6 and TREM2 expression in brain as well as reduced branch number and length, an indication of "activated" morphology, in the absence of inflammatory stimuli. LPS intraperitoneal injection resulted in higher inflammatory gene expression in PS2 N141I mouse brain relative to controls. CONCLUSION: Our findings demonstrate that PSEN2 N141I heterozygosity is associated with disrupted innate immune homeostasis, suggesting EOFAD variants may promote disease progression through non-neuronal cells beyond canonical dysregulated Aß production.


Assuntos
Doença de Alzheimer/genética , Variação Genética/genética , Heterozigoto , Microglia/fisiologia , Fenótipo , Presenilina-2/genética , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia
14.
Front Immunol ; 11: 577027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391257

RESUMO

Chimeric antigen receptor (CAR) T cells provide new therapeutic options for patients with relapsed/refractory hematologic malignancies. However, neurotoxicity is a frequent, and potentially fatal, complication. The spectrum of manifestations ranges from delirium and language dysfunction to seizures, coma, and fatal cerebral edema. This novel syndrome has been designated immune effector cell-associated neurotoxicity syndrome (ICANS). In this review, we draw an arc from our current understanding of how systemic and potentially local cytokine release act on the CNS, toward possible preventive and therapeutic approaches. We systematically review reported correlations of secreted inflammatory mediators in the serum/plasma and cerebrospinal fluid with the risk of ICANS in patients receiving CAR T cell therapy. Possible pathophysiologic impacts on the CNS are covered in detail for the most promising candidate cytokines, including IL-1, IL-6, IL-15, and GM-CSF. To provide insight into possible final common pathways of CNS inflammation, we place ICANS into the context of other systemic inflammatory conditions that are associated with neurologic dysfunction, including sepsis-associated encephalopathy, cerebral malaria, thrombotic microangiopathy, CNS infections, and hepatic encephalopathy. We then review in detail what is known about systemic cytokine interaction with components of the neurovascular unit, including endothelial cells, pericytes, and astrocytes, and how microglia and neurons respond to systemic inflammatory challenges. Current therapeutic approaches, including corticosteroids and blockade of IL-1 and IL-6 signaling, are reviewed in the context of what is known about the role of cytokines in ICANS. Throughout, we point out gaps in knowledge and possible new approaches for the investigation of the mechanism, prevention, and treatment of ICANS.


Assuntos
Barreira Hematoencefálica/fisiologia , Sistema Nervoso Central/imunologia , Citocinas/metabolismo , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Inflamação/imunologia , Síndromes Neurotóxicas/metabolismo , Animais , Neoplasias Hematológicas/imunologia , Humanos , Síndromes Neurotóxicas/etiologia , Receptores de Antígenos Quiméricos/genética
15.
Glia ; 68(1): 76-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420975

RESUMO

Ischemic preconditioning (IPC) is an experimental phenomenon in which a subthreshold ischemic insult applied to the brain reduces damage caused by a subsequent more severe ischemic episode. Identifying key molecular and cellular mediators of IPC will provide critical information needed to develop novel therapies for stroke. Here we report that the transcriptomic response of acutely isolated preconditioned cortical microglia is dominated by marked upregulation of genes involved in cell cycle activation and cellular proliferation. Notably, this transcriptional response occurs in the absence of cortical infarction. We employed ex vivo flow cytometry, immunofluorescent microscopy, and quantitative stereology methods on brain tissue to evaluate microglia proliferation following IPC. Using cellular colocalization of microglial (Iba1) and proliferation (Ki67 and BrdU) markers, we observed a localized increase in the number of microglia and proliferating microglia within the preconditioned hemicortex at 72, but not 24, hours post-IPC. Our quantification demonstrated that the IPC-induced increase in total microglia was due entirely to proliferation. Furthermore, microglia in the preconditioned hemisphere had altered morphology and increased soma volumes, indicative of an activated phenotype. Using transgenic mouse models with either fractalkine receptor (CX3CR1)-haploinsufficiency or systemic type I interferon signaling loss, we determined that microglial proliferation after IPC is dependent on fractalkine signaling but independent of type I interferon signaling. These findings suggest there are multiple distinct targetable signaling pathways in microglia, including CX3CR1-dependent proliferation that may be involved in IPC-mediated protection.


Assuntos
Ciclo Celular/fisiologia , Córtex Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Precondicionamento Isquêmico/métodos , Microglia/metabolismo , Transcriptoma/fisiologia , Animais , Proliferação de Células/fisiologia , Córtex Cerebral/patologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Ann Clin Transl Neurol ; 6(4): 762-777, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31020001

RESUMO

OBJECTIVE: Autosomal-dominant familial Alzheimer disease (AD) is caused by by variants in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP). Previously, we reported a rare PSEN2 frameshift variant in an early-onset AD case (PSEN2 p.K115Efs*11). In this study, we characterize a second family with the same variant and analyze cellular transcripts from both patient fibroblasts and brain lysates. METHODS: We combined genomic, neuropathological, clinical, and molecular techniques to characterize the PSEN2 K115Efs*11 variant in two families. RESULTS: Neuropathological and clinical evaluation confirmed the AD diagnosis in two individuals carrying the PSEN2 K115Efs*11 variant. A truncated transcript from the variant allele is detectable in patient fibroblasts while levels of wild-type PSEN2 transcript and protein are reduced compared to controls. Functional studies to assess biological consequences of the variant demonstrated that PSEN2 K115Efs*11 fibroblasts secrete less Aß 1-40 compared to controls, indicating abnormal γ-secretase activity. Analysis of PSEN2 transcript levels in brain tissue revealed alternatively spliced PSEN2 products in patient brain as well as in sporadic AD and age-matched control brain. INTERPRETATION: These data suggest that PSEN2 K115Efs*11 is a likely pathogenic variant associated with AD. We uncovered novel PSEN2 alternative transcripts in addition to previously reported PSEN2 splice isoforms associated with sporadic AD. In the context of a frameshift, these alternative transcripts return to the canonical reading frame with potential to generate deleterious protein products. Our findings suggest novel potential mechanisms by which PSEN variants may influence AD pathogenesis, highlighting the complexity underlying genetic contribution to disease risk.


Assuntos
Processamento Alternativo/genética , Doença de Alzheimer/genética , Mutação/genética , Presenilina-2/genética , Adulto , Doença de Alzheimer/diagnóstico , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/genética , Presenilina-1/genética
17.
Brain Pathol ; 29(2): 164-175, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30028551

RESUMO

Histone deacetylases (HDACs) catalyze acetyl group removal from histone proteins, leading to altered chromatin structure and gene expression. HDAC2 is highly expressed in adult brain, and HDAC2 levels are elevated in Alzheimer's disease (AD) brain. We previously reported that neuron-specific splice isoforms of Endophilin-B1 (Endo-B1) promote neuronal survival, but are reduced in human AD brain and mouse models of AD and stroke. Here, we demonstrate that HDAC2 suppresses Endo-B1 expression. HDAC2 knockdown or knockout enhances expression of Endo-B1. Conversely, HDAC2 overexpression decreases Endo-B1 expression. We also demonstrate that neurons exposed to beta-amyloid increase HDAC2 and reduce histone H3 acetylation while HDAC2 knockdown prevents Aß induced loss of histone H3 acetylation, mitochondrial dysfunction, caspase-3 activation, and neuronal death. The protective effect of HDAC2 knockdown was abrogated by Endo-B1 shRNA and in Endo-B1-null neurons, suggesting that HDAC2-induced neurotoxicity is mediated through suppression of Endo-B1. HDAC2 overexpression also modulates neuronal expression of mitofusin2 (Mfn2) and mitochondrial fission factor (MFF), recapitulating the pattern of change observed in AD. HDAC2 knockout mice demonstrate reduced injury in the middle cerebral artery occlusion with reperfusion (MCAO/R) model of cerebral ischemia demonstrating enhanced neuronal survival, minimized loss of Endo-B1, and normalized expression of Mfn2. These findings support the hypothesis that HDAC2 represses Endo-B1, sensitizing neurons to mitochondrial dysfunction and cell death in stroke and AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Histona Desacetilase 2/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilases/genética , Histonas/genética , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Acidente Vascular Cerebral/fisiopatologia
18.
ASN Neuro ; 9(4): 1759091417716610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683563

RESUMO

Microglia are the primary innate immune cell type in the brain, and their dysfunction has been linked to a variety of central nervous system disorders. Human microglia are extraordinarily difficult to obtain for experimental investigation, limiting our ability to study the impact of human genetic variants on microglia functions. Previous studies have reported that microglia-like cells can be derived from human monocytes or pluripotent stem cells. Here, we describe a reproducible relatively simple method for generating microglia-like cells by first deriving embryoid body mesoderm followed by exposure to microglia relevant cytokines. Our approach is based on recent studies demonstrating that microglia originate from primitive yolk sac mesoderm distinct from peripheral macrophages that arise during definitive hematopoiesis. We hypothesized that functional microglia could be derived from human stem cells by employing BMP-4 mesodermal specification followed by exposure to microglia-relevant cytokines, M-CSF, GM-CSF, IL-34, and TGF-ß. Using immunofluorescence microscopy, flow cytometry, and reverse transcription polymerase chain reaction, we observed cells with microglia morphology expressing a repertoire of markers associated with microglia: Iba1, CX3CR1, CD11b, TREM2, HexB, and P2RY12. These microglia-like cells maintain myeloid functional phenotypes including Aß peptide phagocytosis and induction of pro-inflammatory gene expression in response to lipopolysaccharide stimulation. Addition of small molecules BIO and SB431542, previously demonstrated to drive definitive hematopoiesis, resulted in decreased surface expression of TREM2. Together, these data suggest that mesodermal lineage specification followed by cytokine exposure produces microglia-like cells in vitro from human pluripotent stem cells and that this phenotype can be modulated by factors influencing hematopoietic lineage in vitro.


Assuntos
Linhagem da Célula/fisiologia , Hematopoese/fisiologia , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores Imunológicos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Técnicas de Cultura de Células , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Microglia/citologia , Fagocitose/fisiologia , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Nat Med ; 22(11): 1256-1259, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27618651

RESUMO

We describe the development of fetal brain lesions after Zika virus (ZIKV) inoculation in a pregnant pigtail macaque. Periventricular lesions developed within 10 d and evolved asymmetrically in the occipital-parietal lobes. Fetal autopsy revealed ZIKV in the brain and significant cerebral white matter hypoplasia, periventricular white matter gliosis, and axonal and ependymal injury. Our observation of ZIKV-associated fetal brain lesions in a nonhuman primate provides a model for therapeutic evaluation.


Assuntos
Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Complicações Infecciosas na Gravidez/diagnóstico por imagem , Infecção por Zika virus/diagnóstico por imagem , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Colina/metabolismo , Creatina/metabolismo , Ecoencefalografia , Feminino , Feto/metabolismo , Feto/patologia , Feto/virologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Inositol/metabolismo , Macaca nemestrina , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/patologia , RNA Viral/metabolismo , Ultrassonografia Pré-Natal , Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
20.
Glia ; 64(10): 1788-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27246804

RESUMO

Minocycline, a second generation broad-spectrum antibiotic, has been frequently postulated to be a "microglia inhibitor." A considerable number of publications have used minocycline as a tool and concluded, after achieving a pharmacological effect, that the effect must be due to "inhibition" of microglia. It is, however, unclear how this "inhibition" is achieved at the molecular and cellular levels. Here, we weigh the evidence whether minocycline is indeed a bona fide microglia inhibitor and discuss how data generated with minocycline should be interpreted. GLIA 2016;64:1788-1794.


Assuntos
Antibacterianos/farmacologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Animais , Antibacterianos/uso terapêutico , Bases de Dados Factuais/estatística & dados numéricos , Humanos , Microglia/fisiologia , Minociclina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...