Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 88(11): 855-866, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800629

RESUMO

BACKGROUND: Dopamine (DA) is hypothesized to modulate anxiety-like behavior, although the precise role of DA in anxiety behaviors and the complete anxiety network in the brain have yet to be elucidated. Recent data indicate that dopaminergic projections from the ventral tegmental area (VTA) innervate the interpeduncular nucleus (IPN), but how the IPN responds to DA and what role this circuit plays in anxiety-like behavior are unknown. METHODS: We expressed a genetically encoded G protein-coupled receptor activation-based DA sensor in mouse midbrain to detect DA in IPN slices using fluorescence imaging combined with pharmacology. Next, we selectively inhibited or activated VTA→IPN DAergic inputs via optogenetics during anxiety-like behavior. We used a biophysical approach to characterize DA effects on neural IPN circuits. Site-directed pharmacology was used to test if DA receptors in the IPN can regulate anxiety-like behavior. RESULTS: DA was detected in mouse IPN slices. Silencing/activating VTA→IPN DAergic inputs oppositely modulated anxiety-like behavior. Two neuronal populations in the ventral IPN (vIPN) responded to DA via D1 receptors (D1Rs). vIPN neurons were controlled by a small population of D1R neurons in the caudal IPN that directly respond to VTA DAergic terminal stimulation and innervate the vIPN. IPN infusion of a D1R agonist and antagonist bidirectionally controlled anxiety-like behavior. CONCLUSIONS: VTA DA engages D1R-expressing neurons in the caudal IPN that innervate vIPN, thereby amplifying the VTA DA signal to modulate anxiety-like behavior. These data identify a DAergic circuit that mediates anxiety-like behavior through unique IPN microcircuitry.


Assuntos
Dopamina , Núcleo Interpeduncular , Animais , Ansiedade , Neurônios Dopaminérgicos , Mesencéfalo , Camundongos , Área Tegmentar Ventral
2.
Sci Rep ; 10(1): 813, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31965003

RESUMO

Tobacco use is the leading preventable cause of mortality in the world. The limited number of smoking cessation aids currently available are minimally effective, highlighting the need for novel therapeutic interventions. We describe a genome-wide approach to identify potential candidates for such interventions. Next-generation sequencing was performed using RNA isolated from the habenulo-interpeduncular circuit of male mice withdrawn from chronic nicotine treatment. This circuit plays a central role in the nicotine withdrawal response. Differentially expressed miRNAs and mRNAs were validated using RT-qPCR. Many of the differentially expressed mRNAs are predicted targets of reciprocally expressed miRNAs. We illustrate the utility of the dataset by demonstrating that knockdown in the interpeduncular nucleus of a differentially expressed mRNA, that encoding profilin 2, is sufficient to induce anxiety-related behavior. Importantly, profilin 2 knockdown in the ventral tegmental area did not affect anxiety behavior. Our data reveal wide-spread changes in gene expression within the habenulo-interpeduncular circuit during nicotine withdrawal. This dataset should prove to be a valuable resource leading to the identification of substrates for the design of innovative smoking cessation aids.


Assuntos
Habenula/fisiologia , Núcleo Interpeduncular/fisiologia , MicroRNAs/genética , Nicotina , RNA Mensageiro/genética , Síndrome de Abstinência a Substâncias/genética , Animais , Ansiedade/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Profilinas/genética
3.
Nat Neurosci ; 20(9): 1260-1268, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714952

RESUMO

Novelty preference (NP) is an evolutionarily conserved, essential survival mechanism often dysregulated in neuropsychiatric disorders. NP is mediated by a motivational dopamine signal that increases in response to novel stimuli, thereby driving exploration. However, the mechanism by which once-novel stimuli transition to familiar stimuli is unknown. Here we describe a neuroanatomical substrate for familiarity signaling, the interpeduncular nucleus (IPN) of the midbrain, which is activated as novel stimuli become familiar with multiple exposures. In mice, optogenetic silencing of IPN neurons increases salience of and interaction with familiar stimuli without affecting novelty responses, whereas photoactivation of the same neurons reduces exploration of novel stimuli mimicking familiarity. Bidirectional control of NP by the IPN depends on familiarity signals and novelty signals arising from excitatory habenula and dopaminergic ventral tegmentum inputs, which activate and reduce IPN activity, respectively. These results demonstrate that familiarity signals through unique IPN circuitry that opposes novelty seeking to control NP.


Assuntos
Comportamento de Escolha/fisiologia , Comportamento Exploratório/fisiologia , Núcleo Interpeduncular/fisiologia , Rede Nervosa/fisiologia , Reconhecimento Psicológico/fisiologia , Transdução de Sinais/fisiologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Núcleo Interpeduncular/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Optogenética/métodos , Técnicas de Cultura de Órgãos , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Elife ; 62017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196335

RESUMO

Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal 'quality of life'. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics.


Assuntos
Exposição Ambiental , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Exposição Paterna , Herança Paterna , Xenobióticos/metabolismo , Animais , Resistência a Medicamentos , Feminino , Inativação Metabólica , Fígado/metabolismo , Masculino , Camundongos , Análise de Sobrevida
5.
Neuropharmacology ; 107: 294-304, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27020042

RESUMO

Cholinergic neurons in the medial habenula (MHb) modulate anxiety during nicotine withdrawal although the molecular neuroadaptation(s) within the MHb that induce affective behaviors during nicotine cessation is largely unknown. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their behavioral role as autoreceptors in these neurons has not been described. To test the hypothesis that nAChR signaling in MHb cholinergic neurons could modulate anxiety, we expressed novel "gain of function" nAChR subunits selectively in MHb cholinergic neurons of adult mice. Mice expressing these mutant nAChRs exhibited increased anxiety-like behavior that was alleviated by blockade with a nAChR antagonist. To test the hypothesis that anxiety induced by nicotine withdrawal may be mediated by increased MHb nicotinic receptor signaling, we infused nAChR subtype selective antagonists into the MHb of nicotine naïve and withdrawn mice. While antagonists had little effect on nicotine naïve mice, blocking α4ß2 or α6ß2, but not α3ß4 nAChRs in the MHb alleviated anxiety in mice undergoing nicotine withdrawal. Consistent with behavioral results, there was increased functional expression of nAChRs containing the α6 subunit in MHb neurons that also expressed the α4 subunit. Together, these data indicate that MHb cholinergic neurons regulate nicotine withdrawal-induced anxiety via increased signaling through nicotinic receptors containing the α6 subunit and point toward nAChRs in MHb cholinergic neurons as molecular targets for smoking cessation therapeutics.


Assuntos
Ansiedade/metabolismo , Neurônios Colinérgicos/metabolismo , Habenula/metabolismo , Nicotina/efeitos adversos , Receptores Nicotínicos/biossíntese , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Ansiedade/psicologia , Neurônios Colinérgicos/efeitos dos fármacos , Habenula/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Síndrome de Abstinência a Substâncias/psicologia
6.
Neuropsychopharmacology ; 41(5): 1210-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26324408

RESUMO

Cocaine addiction and depression are comorbid disorders. Although it is well recognized that 5-hydroxytryptamine (5-HT; serotonin) plays a central role in depression, our understanding of its role in addiction is notably lacking. The 5-HT system in the brain is carefully controlled by a combined process of regulating 5-HT neuron firing through 5-HT autoreceptors, neurotransmitter release, enzymatic degradation, and reuptake by transporters. This study tests the hypothesis that activation of 5-HT1A autoreceptors, which would lessen 5-HT neuron firing, contributes to cocaine-seeking behaviors. Using 5-HT neuron-specific reduction of 5-HT1A autoreceptor gene expression in mice, we demonstrate that 5-HT1A autoreceptors are necessary for cocaine conditioned place preference. In addition, using designer receptors exclusively activated by designer drugs (DREADDs) technology, we found that stimulation of the serotonergic dorsal raphe nucleus (DRN) afferents to the nucleus accumbens (NAc) abolishes cocaine reward and promotes antidepressive-like behaviors. Finally, using a rat model of compulsive-like cocaine self-administration, we found that inhibition of dorsal raphe 5-HT1A autoreceptors attenuates cocaine self-administration in rats with 6 h extended access, but not 1 h access to the drug. Therefore, our findings suggest an important role for 5-HT1A autoreceptors, and thus DRNNAc 5-HT neuronal activity, in the etiology and vulnerability to cocaine reward and addiction. Moreover, our findings support a strategy for antagonizing 5-HT1A autoreceptors for treating cocaine addiction.


Assuntos
Cocaína/administração & dosagem , Comportamento Compulsivo/fisiopatologia , Núcleo Dorsal da Rafe/fisiopatologia , Comportamento de Procura de Droga/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Neurônios Serotoninérgicos/fisiologia , Animais , Autorreceptores/antagonistas & inibidores , Autorreceptores/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Drogas Desenhadas/administração & dosagem , Núcleo Dorsal da Rafe/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Motivação/efeitos dos fármacos , Motivação/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/genética , Recompensa , Neurônios Serotoninérgicos/efeitos dos fármacos , Antagonistas do Receptor 5-HT1 de Serotonina/administração & dosagem
7.
Dev Cell ; 35(6): 750-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702833

RESUMO

Paternal diet can impact metabolic phenotypes in offspring, but mechanisms underlying such intergenerational information transfer remain obscure. Here, we interrogate cytosine methylation patterns in sperm obtained from mice consuming one of three diets, generating whole genome methylation maps for four pools of sperm samples and for 12 individual sperm samples, as well as 61 genome-scale methylation maps. We find that "epivariation," either stochastic or due to unknown demographic or environmental factors, was a far stronger contributor to the sperm methylome than was the diet consumed. Variation in cytosine methylation was particularly dramatic over tandem repeat families, including ribosomal DNA (rDNA) repeats, but rDNA methylation was strongly correlated with genetic variation in rDNA copy number and was not influenced by paternal diet. These results identify loci of genetic and epigenetic lability in the mammalian genome but argue against a direct role for sperm cytosine methylation in dietary reprogramming of offspring metabolism.


Assuntos
DNA Ribossômico/genética , Epigênese Genética/genética , Variação Genética , Genoma/genética , Espermatozoides/metabolismo , Animais , Metilação de DNA/genética , Dieta , Epigenômica , Masculino , Camundongos
9.
J Neurosci ; 35(22): 8570-8, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26041923

RESUMO

Chronic nicotine exposure increases sensitivity to nicotine reward during a withdrawal period, which may facilitate relapse in abstinent smokers, yet the molecular neuroadaptation(s) that contribute to this phenomenon are unknown. Interestingly, chronic nicotine use induces functional upregulation of nicotinic acetylcholine receptors (nAChRs) in the mesocorticolimbic reward pathway potentially linking upregulation to increased drug sensitivity. In the ventral tegmental area (VTA), functional upregulation of nAChRs containing the α4 subunit (α4* nAChRs) is restricted to GABAergic neurons. To test the hypothesis that increased functional expression of α4* nAChRs in these neurons modulates nicotine reward behaviors, we engineered a Cre recombinase-dependent gene expression system to selectively express α4 nAChR subunits harboring a "gain-of-function" mutation [a leucine mutated to a serine residue at the 9' position (Leu9'Ser)] in VTA GABAergic neurons of adult mice. In mice expressing Leu9'Ser α4 nAChR subunits in VTA GABAergic neurons (Gad2(VTA):Leu9'Ser mice), subreward threshold doses of nicotine were sufficient to selectively activate VTA GABAergic neurons and elicit acute hypolocomotion, with subsequent nicotine exposures eliciting tolerance to this effect, compared to control animals. In the conditioned place preference procedure, nicotine was sufficient to condition a significant place preference in Gad2(VTA):Leu9'Ser mice at low nicotine doses that failed to condition control animals. Together, these data indicate that functional upregulation of α4* nAChRs in VTA GABAergic neurons confers increased sensitivity to nicotine reward and points to nAChR subtypes specifically expressed in GABAergic VTA neurons as molecular targets for smoking cessation therapeutics.


Assuntos
Neurônios GABAérgicos/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Recompensa , Regulação para Cima/genética , Área Tegmentar Ventral/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calbindina 2/metabolismo , Calbindinas/metabolismo , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Di-Hidro-beta-Eritroidina/farmacologia , Relação Dose-Resposta a Droga , Neurônios GABAérgicos/efeitos dos fármacos , Glutamato Descarboxilase/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Nicotínicos/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
10.
Nat Commun ; 6: 6770, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25898242

RESUMO

Increased anxiety is a prominent withdrawal symptom in abstinent smokers, yet the neuroanatomical and molecular bases underlying it are unclear. Here we show that withdrawal-induced anxiety increases activity of neurons in the interpeduncular intermediate (IPI), a subregion of the interpeduncular nucleus (IPN). IPI activation during nicotine withdrawal was mediated by increased corticotropin releasing factor (CRF) receptor-1 expression and signalling, which modulated glutamatergic input from the medial habenula (MHb). Pharmacological blockade of IPN CRF1 receptors or optogenetic silencing of MHb input reduced IPI activation and alleviated withdrawal-induced anxiety; whereas IPN CRF infusion in mice increased anxiety. We identified a mesointerpeduncular circuit, consisting of ventral tegmental area (VTA) dopaminergic neurons projecting to the IPN, as a potential source of CRF. Knockdown of CRF synthesis in the VTA prevented IPI activation and anxiety during nicotine withdrawal. These data indicate that increased CRF receptor signalling within a VTA-IPN-MHb circuit triggers anxiety during nicotine withdrawal.


Assuntos
Ansiedade/etiologia , Hormônio Liberador da Corticotropina/metabolismo , Habenula/fisiologia , Núcleo Interpeduncular/fisiologia , Nicotina/efeitos adversos , Área Tegmentar Ventral/fisiologia , Animais , Habenula/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia
11.
Neuron ; 84(5): 997-1008, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467983

RESUMO

Three-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here we describe activity-regulated long-range loopings bypassing up to 0.5 Mb of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3' intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a "cargo" of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher-order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition.


Assuntos
Cromatina/metabolismo , Cognição/fisiologia , Regulação da Expressão Gênica/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Recém-Nascidos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/ultraestrutura , Cromatina/efeitos dos fármacos , Cognição/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/ultraestrutura , Polimorfismo de Nucleotídeo Único/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/patologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
RNA ; 20(12): 1890-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344397

RESUMO

Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR ß2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.


Assuntos
Canais Iônicos/biossíntese , MicroRNAs/biossíntese , Nicotina/metabolismo , Receptores Nicotínicos/genética , Regiões 3' não Traduzidas , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica/genética , Canais Iônicos/genética , Ligantes , Mamíferos , Camundongos , MicroRNAs/genética , Mutagênese Sítio-Dirigida , Especificidade de Órgãos , Receptores Nicotínicos/biossíntese , Transdução de Sinais/genética
13.
Mol Cell Neurosci ; 58: 22-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184162

RESUMO

The type III RNAse, Dicer, is responsible for the processing of microRNA (miRNA) precursors into functional miRNA molecules, non-coding RNAs that bind to and target messenger RNAs for repression. Dicer expression is essential for mouse midbrain development and dopaminergic (DAergic) neuron maintenance and survival during the early post-natal period. However, the role of Dicer in adult mouse DAergic neuron maintenance and survival is unknown. To bridge this gap in knowledge, we selectively knocked-down Dicer expression in individual DAergic midbrain areas, including the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) via viral-mediated expression of Cre in adult floxed Dicer knock-in mice (Dicer(flox/flox)). Bilateral Dicer loss in the VTA resulted in progressive hyperactivity that was significantly reduced by the dopamine agonist, amphetamine. In contrast, decreased Dicer expression in the SNpc did not affect locomotor activity but did induce motor-learning impairment on an accelerating rotarod. Knock-down of Dicer in both midbrain regions of adult Dicer(flox/flox) mice resulted in preferential, progressive loss of DAergic neurons likely explaining motor behavior phenotypes. In addition, knock-down of Dicer in midbrain areas triggered neuronal death via apoptosis. Together, these data indicate that Dicer expression and, as a consequence, miRNA function, are essential for DAergic neuronal maintenance and survival in adult midbrain DAergic neuron brain areas.


Assuntos
RNA Helicases DEAD-box/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Ribonuclease III/metabolismo , Anfetamina/farmacologia , Animais , Apoptose , RNA Helicases DEAD-box/genética , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Aprendizagem , Locomoção , Mesencéfalo/citologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/fisiologia , Camundongos , Especificidade de Órgãos , Fenótipo , Ribonuclease III/genética
14.
Curr Biol ; 23(23): 2327-35, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24239118

RESUMO

BACKGROUND: Chronic exposure to nicotine elicits physical dependence in smokers, yet the mechanism and neuroanatomical bases for withdrawal symptoms are unclear. As in humans, rodents undergo physical withdrawal symptoms after cessation from chronic nicotine characterized by increased scratching, head nods, and body shakes. RESULTS: Here we show that induction of physical nicotine withdrawal symptoms activates GABAergic neurons within the interpeduncular nucleus (IPN). Optical activation of IPN GABAergic neurons via light stimulation of channelrhodopsin elicited physical withdrawal symptoms in both nicotine-naive and chronic-nicotine-exposed mice. Dampening excitability of GABAergic neurons during nicotine withdrawal through IPN-selective infusion of an NMDA receptor antagonist or through blockade of IPN neurotransmission from the medial habenula reduced IPN neuronal activation and alleviated withdrawal symptoms. During chronic nicotine exposure, nicotinic acetylcholine receptors containing the ß4 subunit were upregulated in somatostatin interneurons clustered in the dorsal region of the IPN. Blockade of these receptors induced withdrawal signs more dramatically in nicotine-dependent compared to nicotine-naive mice and activated nonsomatostatin neurons in the IPN. CONCLUSIONS: Together, our data indicate that therapeutic strategies to reduce IPN GABAergic neuron excitability during nicotine withdrawal, for example, by activating nicotinic receptors on somatostatin interneurons, may be beneficial for alleviating withdrawal symptoms and facilitating smoking cessation.


Assuntos
Neurônios GABAérgicos/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Neurônios GABAérgicos/efeitos da radiação , Ácido Glutâmico/metabolismo , Luz , Masculino , Mecamilamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Nicotina/administração & dosagem , Antagonistas Nicotínicos/farmacologia , Fototerapia/métodos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores Nicotínicos/biossíntese , Rodopsina/biossíntese , Rodopsina/genética , Somatostatina , Transmissão Sináptica/fisiologia
15.
Front Physiol ; 4: 251, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062692

RESUMO

Ion channels modulate ion flux across cell membranes, activate signal transduction pathways, and influence cellular transport-vital biological functions that are inexorably linked to cellular processes that go awry during carcinogenesis. Indeed, deregulation of ion channel function has been implicated in cancer-related phenomena such as unrestrained cell proliferation and apoptotic evasion. As the prototype for ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs) have been extensively studied in the context of neuronal cells but accumulating evidence also indicate a role for nAChRs in carcinogenesis. Recently, variants in the nAChR genes CHRNA3, CHRNA5, and CHRNB4 have been implicated in nicotine dependence and lung cancer susceptibility. Here, we silenced the expression of these three genes to investigate their function in lung cancer. We show that these genes are necessary for the viability of small cell lung carcinomas (SCLC), the most aggressive type of lung cancer. Furthermore, we show that nicotine promotes SCLC cell viability whereas an α3ß4-selective antagonist, α-conotoxin AuIB, inhibits it. Our findings posit a mechanism whereby signaling via α3/α5/ß4-containing nAChRs promotes lung carcinogenesis.

16.
J Occup Environ Hyg ; 10(10): 564-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24011377

RESUMO

The growing threat of an influenza pandemic presents a unique challenge to healthcare workers, emergency responders, and the civilian population. The Occupational Safety and Health Administration (OSHA) recommends National Institute for Occupational Safety and Health (NIOSH)-approved respirators to provide protection against infectious airborne viruses in various workplace settings. The filtration efficiency of selected NIOSH-approved particulate N95 and P100 filtering facepiece respirators (FFRs) and filter cartridges was investigated against the viable MS2 virus, a non-pathogenic bacteriophage, aerosolized from a liquid suspension. Tests were performed under two cyclic flow conditions (minute volumes of 85 and 135 L/min) and two constant flow rates (85 and 270 L/min). The mean penetrations of viable MS2 through the N95 and P100 FFRs/cartridges were typically less than 2 and 0.03%, respectively, under all flow conditions. All N95 and P100 FFR and cartridge models assessed in this study, therefore, met or exceeded their respective efficiency ratings of 95 and 99.97% against the viable MS2 test aerosol, even under the very high flow conditions. These NIOSH-approved FFRs and particulate respirators equipped with these cartridges can be anticipated to achieve expected levels of protection (consistent with their assigned protection factor) against airborne viral agents, provided that they are properly selected, fitted, worn, and maintained.


Assuntos
Microbiologia do Ar , Exposição por Inalação/prevenção & controle , Dispositivos de Proteção Respiratória , Movimentos do Ar , Análise de Variância , Filtração , Humanos , Vírus da Influenza A , Influenza Humana/prevenção & controle , Teste de Materiais , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/prevenção & controle , Tamanho da Partícula , Estados Unidos
17.
J Neurosci ; 33(29): 11839-51, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864674

RESUMO

Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression, including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here, we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus, and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark, histone H3 trimethylated at lysine 4, and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia, GAD1-TSS(-50kbLoop) was decreased compared with controls, in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop), the murine homolog to GAD1-TSS(-50kbLoop), is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture, Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures, including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression, are conserved between the rodent and primate brain, and subject to developmental and activity-dependent regulation, and disordered in some cases with schizophrenia. More broadly, the findings presented here draw a connection between noncoding DNA, spatial genome architecture, and neuronal plasticity in development and disease.


Assuntos
Glutamato Descarboxilase/genética , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Animais , Antipsicóticos/farmacologia , Células Cultivadas , Cromossomos Humanos Par 2 , Clozapina/farmacologia , Metilação de DNA , Regulação para Baixo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glutamato Descarboxilase/metabolismo , Haloperidol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Esquizofrenia/metabolismo
18.
Biol Psychiatry ; 73(8): 738-46, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23141806

RESUMO

BACKGROUND: Nicotine and alcohol are the two most co-abused drugs in the world, suggesting a common mechanism of action might underlie their rewarding properties. Although nicotine elicits reward by activating ventral tegmental area dopaminergic (DAergic) neurons via high-affinity neuronal nicotinic acetylcholine receptors (nAChRs), the mechanism by which alcohol activates these neurons is unclear. METHODS: Because most high-affinity nAChRs expressed in ventral tegmental area DAergic neurons contain the α4 subunit, we measured ethanol-induced activation of DAergic neurons in midbrain slices from two complementary mouse models, an α4 knock-out (KO) mouse line and a knock-in line (Leu9'Ala) expressing α4 subunit-containing nAChRs hypersensitive to agonist compared with wild-type (WT). Activation of DAergic neurons by ethanol was analyzed with both biophysical and immunohistochemical approaches in midbrain slices. The ability of alcohol to condition a place preference in each mouse model was also measured. RESULTS: At intoxicating concentrations, ethanol activation of DAergic neurons was significantly reduced in α4 KO mice compared with WT. Conversely, in Leu9'Ala mice, DAergic neurons were activated by low ethanol concentrations that did not increase activity of WT neurons. In addition, alcohol potentiated the response to ACh in DAergic neurons, an effect reduced in α4 KO mice. Rewarding alcohol doses failed to condition a place preference in α4 KO mice, paralleling alcohol effects on DAergic neuron activity, whereas a sub-rewarding alcohol dose was sufficient to condition a place preference in Leu9'Ala mice. CONCLUSIONS: Together, these data indicate that nAChRs containing the α4 subunit modulate alcohol reward.


Assuntos
Etanol/farmacologia , Receptores Nicotínicos/fisiologia , Recompensa , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Etanol/antagonistas & inibidores , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Receptores Nicotínicos/genética , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
19.
Mol Pharmacol ; 81(4): 541-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22222765

RESUMO

Nicotine is reinforcing because it activates dopaminergic (DAergic) neurons within the ventral tegmental area (VTA) of the brain's mesocorticolimbic reward circuitry. This increase in activity can occur for a period of several minutes up to an hour and is thought to be a critical component of nicotine dependence. However, nicotine concentrations that are routinely self-administered by smokers are predicted to desensitize high-affinity α4ß2 neuronal nicotinic acetylcholine receptors (nAChRs) in seconds. Thus, how physiologically relevant nicotine concentrations persistently activate VTA DAergic neurons is unknown. Here we show that nicotine can directly and robustly increase the firing frequency of VTA DAergic neurons for several minutes. In mouse midbrain slices, 300 nM nicotine elicited a persistent inward current in VTA DAergic neurons that was blocked by α-conotoxin MII[H9A;L15A], a selective antagonist of nAChRs containing the α6 subunit. α-conotoxin MII[H9A;L15A] also significantly reduced the long-lasting increase in DAergic neuronal activity produced by low concentrations of nicotine. In addition, nicotine failed to significantly activate VTA DAergic neurons in mice that did not express either α4 or α6 nAChR subunits. Conversely, selective activation of nAChRs containing the α4 subunit in knock-in mice expressing a hypersensitive version of these receptors yielded a biphasic response to nicotine consisting of an acute desensitizing increase in firing frequency followed by a sustained increase that lasted several minutes and was sensitive to α-conotoxin MII[H9A;L15A]. These data indicate that nicotine persistently activates VTA DAergic neurons via nAChRs containing α4 and α6 subunits.


Assuntos
Dopamina/metabolismo , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores Nicotínicos/química , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo
20.
PLoS One ; 6(9): e24132, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931655

RESUMO

BACKGROUND: Frontline treatment of small cell lung carcinoma (SCLC) relies heavily on chemotherapeutic agents and radiation therapy. Though SCLC patients respond well to initial cycles of chemotherapy, they eventually develop resistance. Identification of novel therapies against SCLC is therefore imperative. METHODS AND FINDINGS: We have designed a bioluminescence-based cell viability assay for high-throughput screening of anti-SCLC agents. The assay was first validated via standard pharmacological agents and RNA interference using two human SCLC cell lines. We then utilized the assay in a high-throughput screen using the LOPAC(1280) compound library. The screening identified several drugs that target classic cancer signaling pathways as well as neuroendocrine markers in SCLC. In particular, perturbation of dopaminergic and serotonergic signaling inhibits SCLC cell viability. CONCLUSIONS: The convergence of our pharmacological data with key SCLC pathway components reiterates the importance of neurotransmitter signaling in SCLC etiology and points to possible leads for drug development.


Assuntos
Antineoplásicos/farmacologia , Medições Luminescentes/métodos , Neurotransmissores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotoninérgicos/farmacologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Estaurosporina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...