Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 152: 106467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387119

RESUMO

Understanding how mechanical damage propagates in load-bearing tissues such as skin, tendons and ligaments, is key to developing regenerative medicine solutions for when these tissues fail. For collagenous tissues in particular, damage is typically assessed after mechanical testing using a broad range of microscopy techniques because standard tensile testing systems do not have the time and force sensitivity to resolve mechanical damage events. Here we introduce an interferometric detection scheme to measure the displacement of a cantilever with a resolution of 0.03% of full scale at a sampling rate of 5000 samples/s. The system is validated using collagen fibers engineered to mimic mammalian tendons. The system can detect sudden decrease in force due to slippage between collagen filaments, one to five microns in diameter, within a fiber in air. It can also detect yield events associated with local collagen unfolding or sliding within collagen fibrils within a fiber in liquid. This is opening the road to the sub-failure study of damage propagation within a broad range of hierarchical biomaterials.


Assuntos
Colágeno , Matriz Extracelular , Animais , Materiais Biocompatíveis , Citoesqueleto , Interferometria , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...