Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(9): 4031-4045, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38381002

RESUMO

The absence of standardized procedures to assess microfiber pollution released during laundering, alongside textile complexities, has caused incomparability and inconsistency between published methodologies, data formats, and presentation of findings. Yet, this information needs to be clear and succinct to engage producers and consumers in reducing microfiber pollution through solutions, such as eco-design. This review analyses source directed interventions through design and manufacturing parameters that can prevent or reduce microfiber shedding from knit fabrics during washing. Contradicting results are critically evaluated and future research agendas, alongside potential areas for voluntary and involuntary sustainable incentives are summarized. To do this, a systematic review was carried out, using the PRISMA approach to verify which fabrics had been investigated in terms of microfiber shedding. Using selected keywords, a total number of 32 articles were included in this review after applying carefully developed inclusion and exclusion criteria. The influence of fabric parameters such as fiber polymer, length of fibers and yarn twist alongside fabric construction parameters such as gauge of knit and knit structure are critically evaluated within the systematically selected studies. This review highlights the agreed upon fabric parameters and constructions that can be implemented to reduce microfiber pollution released from knit textiles. The complexities and inconsistencies within the findings are streamlined to highlight the necessary future research agendas. This information is critical to facilitate the adoption of cross-industry collaboration to achieve pollution reduction strategies and policies. We call for more systematic studies to assess the relationship between individual textile parameters and their influence on microfiber shedding. Additionally, studies should work toward standardization to increase comparability between studies and created more comprehensive guidelines for policy development and voluntary actions for the textile and apparel industry to participate in addressing more sustainable practises through eco-design.


Assuntos
Lavanderia , Plásticos , Têxteis , Poliésteres/química , Poluição Ambiental
2.
Chempluschem ; 89(5): e202300484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38189572

RESUMO

Chemical activated carbons (PET-H2SO4 and PET-KOH) were prepared from post-consumer polyethylene terephthalate (PET) wastes using pyrolysis under moderate reaction temperatures by changing pyrolysis time and chemical activating agents. The produced carbons were characterized and tested in adsorption reactions of manganese, chromium, and cobalt ions in aqueous solutions. Results showed a high percentage removal of these inorganic ions from water: 98 % for Mn2+, 87 % for Cr3+, and 88 % for Co2+. Freundlich isotherms gave a better fit to the experimental data obtained with good correlation coefficient values in the range of 0.99-1 compared to other isotherms. The pseudo-second order kinetic model best described the chemical adsorption process as an exchange of electrons between the carbon and inorganic ions in solutions. The diffusion models showed that the process is controlled by a multi-kinetic stage adsorption process. In summary, this work demonstrates that the production of activated carbon from PET waste bottles is a potential alternative to commercial activated carbon and can be considered a sustainable waste management technology for removing these non-biodegradable plastic wastes from the environment.

3.
Sci Total Environ ; 887: 163999, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37172830

RESUMO

Waste PVC is scarcely recycled due to its high chlorine content and its use in composite materials, which reduces the applicability of conventional waste treatment methods, including thermal, mechanical and chemical recycling. For this reason, alternative treatment options are being developed to increase the recyclability of waste PVC. This paper focuses on one such option which utilises ionic liquids (ILs) for material separation and dehydrochlorination of PVC contained in composite materials. Taking blisterpacks used as a packaging for medicines as an example of a composite material, the paper presents for the first time the life cycle environmental impacts of this novel PVC recycling method, in comparison with thermal treatment (low-temperature pyrolytic degradation of PVC). Three ILs were considered for the PVC recycling process: trihexyl(tetradecyl)phosphonium chloride, bromide and hexanoate. The results suggested that the impacts of the process using the first two ILs were comparable, while the system with hexanoate-based IL had 7-229 % higher impacts. Compared to the thermal treatment of waste blisterpacks, the IL assisted process had significantly higher impacts (22-819 %) in all 18 categories considered due to the greater heat requirements and the IL losses. Reducing the latter would lower most impacts by 8-41 %, while optimising the energy requirements would reduce the impacts by 10-58 %. Moreover, recovering HCl would increase significantly the environmental sustainability of the process, resulting in net-negative impacts (savings) in most categories. Overall, these improvements would lead to lower or comparable impacts to those of the thermal treatment. The findings of this study will be of interest to the polymer, recycling and related industries, as well as to process developers.

4.
ACS Catal ; 12(13): 7598-7608, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35799770

RESUMO

Catalytic wastewater treatment has rarely been applied to treat high-ionic-strength wastewater (HISWW) as it contains large amounts of catalyst poisons (e.g., Cl-). This work investigates the catalytic wet oxidation (CWO) of phenol over a MnCeO x catalyst in the presence of high NaCl concentrations where the combination of MnCeO x and NaCl promoted the CWO of phenol. Specifically, in the presence of NaCl at a concentration of 200 g L-1 and MnCeO x at a concentration of 1.0 g L-1, phenol (initially 1.0 g L-1) and total organic carbon (TOC) conversions were ∼98 and 85%, respectively, after a 24 h reaction. Conversely, under the same reaction conditions without NaCl, the catalytic system only achieved phenol and TOC conversions of ∼41 and 27%, respectively. In situ Attenuated Total Reflection infrared spectroscopy identified the nature of the strongly adsorbed carbon deposits with quinone/acid species found on Ce sites and phenolate species on Mn sites in the single oxides and on MnCeO x . The presence of high concentrations of NaCl reduced the carbon deposition over the catalyst, promoting surface oxidation of the hydrocarbon and reoxidation of the catalyst, resulting in enhanced mineralization. Moreover, the used MnCeO x catalyst in the salt water system was efficiently regenerated via a salt water wash under the reaction conditions, showing the great potential of MnCeO x in practical HISWW treatment.

5.
ACS Sustain Chem Eng ; 10(15): 4862-4871, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574430

RESUMO

Photoreforming of cellulose is a promising route for sustainable H2 production. Herein, ball-milling (BM, with varied treatment times of 0.5-24 h) was employed to pretreat microcrystalline cellulose (MCC) to improve its activity in photoreforming over a Pt/TiO2 catalyst. It was found that BM treatment reduced the particle size, crystallinity index (CrI), and degree of polymerization (DP) of MCC significantly, as well as produced amorphous celluloses (with >2 h treatment time). Amorphous cellulose water-induced recrystallization to cellulose II (as evidenced by X-ray diffraction (XRD) and solid-state NMR analysis) was observed in aqueous media. Findings of the work showed that the BM treatment was a simple and effective pretreatment strategy to improve photoreforming of MCC for H2 production, mainly due to the decreased particle size and, specifically in aqueous media, the formation of the cellulose II phase from the recrystallization of amorphous cellulose, the extent of which correlates well with the activity in photoreforming.

6.
R Soc Open Sci ; 9(3): 211353, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35308628

RESUMO

Sulfided nickel, an established hydrocracking and hydrotreating catalyst for hydrocarbon refining, was synthesized on porous aluminosilicate supports for the hydrocracking of mixed polyolefin waste. Zeolite beta, zeolite 13X, MCM41 and an amorphous silica-alumina catalyst support were impregnated with the single-source precursor (SSP) nickel (II) ethylxanthate for catalyst support screening. Application of this synthesis method to beta-supported nickel (Ni@Beta), as an alternative to wet impregnation using aqueous nickel (II) nitrate, provided catalytic materials with higher conversion to fluid products at the same mild batch reaction conditions of 330°C with appropriate agitation and 20 bar H2 pressure. Mass balance quantification demonstrated that SSP-derived 5wt%Ni@Beta yielded a greater than 95 wt% conversion of a mixed polyolefin feed to fluid products, compared with 39.8 wt% conversion in the case of 5wt%Ni@Beta prepared by wet impregnation. Liquid and gas products were quantitatively analysed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS), revealing a strong selectivity to saturated C4 (37.3 wt%), C5 (21.6 wt%) and C6 (12.8 wt%) hydrocarbons in the case of the SSP-derived catalyst.

7.
Front Chem ; 8: 482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695742

RESUMO

Mesostructured zeolitic materials (MZMs) with relatively high acidity in comparison with the mesoporous siliceous MCM-41 were prepared via an efficient, mild, and simple post-synthetic treatment of Y zeolite facilitated by microwave irradiation, i.e., microwave-assisted chelation (MWAC). The disordered mesoporous aluminosilicates materials (DMASs) of MZM were created from Y zeolite in the absence of using mesoscale templates. The prepared DMASs showed the good mesoporous features with the mesopore area and volume of ~260 m2 g-1 and ~0.37 cm3 g-1, respectively, and with the mesopore sizes distributed in a range of 2-10 nm. MZMs possess a total acidity of about 0.6 mmol g-1 and exhibited comparatively superior catalytic activity to the parent Y zeolite and MCM-41 in the vapor phase catalytic dealkylation of 1,3,5-triisopropylbenzene (TiPBz) and liquid phase catalytic aldol condensation of benzaldehyde with 1-heptanal. Although the yield loss was inevitable for preparing MZMs using the MWAC method, the preliminary economic analysis of the preparation cost of MZMs showed the promise. Additionally, a comprehensive comparison of the state-of-the-art mesoporous materials concerning their sustainable aspects was made, showing that MZMs are promising mesoporous materials for further development and functionalization for catalysis.

8.
Artigo em Inglês | MEDLINE | ID: mdl-16760091

RESUMO

Feedstock recycling of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Fresh and steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as used FCC catalysts (E-Cats) with different levels of metal poisoning. Fresh FCC catalysts gave the highest results of HDPE degradation in terms of yield of volatile hydrocarbon product. Meanwhile, steamed FCC catalysts and used FCC catalysts showed similar but lower yields. Overall, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.


Assuntos
Conservação dos Recursos Naturais/métodos , Resíduos Industriais , Polietileno/química , Catálise , Temperatura Alta , Eliminação de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...