Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 37(9): 2830-40, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19282446

RESUMO

A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols delta and eta. Yeast Pol delta and yeast Pol eta both bypass 8-oxoG and misincorporate adenine during bypass. However, yeast Pol eta is 10-fold more efficient than Pol delta, and following bypass Pol eta switches to less processive synthesis, similar to that observed during bypass of a cis-syn thymine-thymine dimer. Moreover, yeast Pol eta is at least 10-fold more accurate than yeast Pol delta during 8-oxoG bypass. These differences are maintained in the presence of the accessory proteins RFC, PCNA and RPA and are consistent with the established role of Pol eta in suppressing ogg1-dependent mutagenesis in yeast. Surprisingly different results are obtained with human and mouse Pol eta. Both mammalian enzymes bypass 8-oxoG efficiently, but they do so less processively, without a switch point and with much lower fidelity than yeast Pol eta. The fact that yeast and mammalian Pol eta have intrinsically different catalytic properties has potential biological implications.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Animais , DNA/biossíntese , Guanina/química , Humanos , Camundongos , Saccharomyces cerevisiae/enzimologia
2.
Cell ; 131(4): 669-81, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-18022362

RESUMO

Inhibitor of apoptosis (IAP) proteins are antiapoptotic regulators that block cell death in response to diverse stimuli. They are expressed at elevated levels in human malignancies and are attractive targets for the development of novel cancer therapeutics. Herein, we demonstrate that small-molecule IAP antagonists bind to select baculovirus IAP repeat (BIR) domains resulting in dramatic induction of auto-ubiquitination activity and rapid proteasomal degradation of c-IAPs. The IAP antagonists also induce cell death that is dependent on TNF signaling and de novo protein biosynthesis. Additionally, the c-IAP proteins were found to function as regulators of NF-kappaB signaling. Through their ubiquitin E3 ligase activities c-IAP1 and c-IAP2 promote proteasomal degradation of NIK, the central ser/thr kinase in the noncanonical NF-kappaB pathway.


Assuntos
Apoptose/fisiologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Ubiquitinação
3.
Biochemistry ; 46(30): 8888-96, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17608453

RESUMO

Among several hypotheses to explain how translesion synthesis (TLS) by DNA polymerase eta (pol eta) suppresses ultraviolet light-induced mutagenesis in vivo despite the fact that pol eta copies DNA with low fidelity, here we test whether replication accessory proteins enhance the fidelity of TLS by pol eta. We first show that the single-stranded DNA binding protein RPA, the sliding clamp PCNA, and the clamp loader RFC slightly increase the processivity of yeast pol eta and its ability to recycle to new template primers. However, these increases are small, and they are similar when copying an undamaged template and a template containing a cis-syn TT dimer. Consequently, the accessory proteins do not strongly stimulate the already robust TT dimer bypass efficiency of pol eta. We then perform a comprehensive analysis of yeast pol eta fidelity. We show that it is much less accurate than other yeast DNA polymerases and that the accessory proteins have little effect on fidelity when copying undamaged templates or when bypassing a TT dimer. Thus, although accessory proteins clearly participate in pol eta functions in vivo, they do not appear to help suppress UV mutagenesis by improving pol eta bypass fidelity per se.


Assuntos
Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Dímeros de Pirimidina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Pareamento de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Replicação do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Mutagênese , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Dímeros de Pirimidina/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Moldes Genéticos , Raios Ultravioleta
4.
J Biol Chem ; 282(28): 20256-63, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17517887

RESUMO

During normal DNA replication, the proliferating cell nuclear antigen (PCNA) enhances the processivity of DNA polymerases at the replication fork. When DNA damage is encountered, PCNA is monoubiquitinated on Lys-164 by the Rad6-Rad18 complex as the initiating step of translesion synthesis. DNA damage bypass by the translesion synthesis polymerase Rev1 is enhanced by the presence of ubiquitinated PCNA. Here we have carried out a mutational analysis of Rev1, and we have identified the functional domain in the C terminus of Rev1 that mediates interactions with PCNA. We show that a unique motif within this domain binds the ubiquitin moiety of ubiquitinated PCNA. Point mutations within this ubiquitin-binding motif of Rev1 (L821A,P822A,I825A) abolish its functional interaction with ubiquitinated PCNA in vitro and strongly attenuate damage-induced mutagenesis in vivo. Taken together, these studies suggest a specific mechanism by which the interaction between Rev1 and ubiquitinated PCNA is stabilized during the DNA damage response.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/metabolismo , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Sistema Livre de Células/metabolismo , Dano ao DNA/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Mutagênese , Proteínas Nucleares , Nucleotidiltransferases/genética , Mutação Puntual , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina/genética
5.
Nucleic Acids Res ; 34(17): 4731-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16971464

RESUMO

DNA polymerase zeta (pol zeta) participates in several DNA transactions in eukaryotic cells that increase spontaneous and damage-induced mutagenesis. To better understand this central role in mutagenesis in vivo, here we report the fidelity of DNA synthesis in vitro by yeast pol zeta alone and with RFC, PCNA and RPA. Overall, the accessory proteins have little effect on the fidelity of pol zeta. Pol zeta is relatively accurate for single base insertion/deletion errors. However, the average base substitution fidelity of pol zeta is substantially lower than that of homologous B family pols alpha, delta and epsilon. Pol zeta is particularly error prone for substitutions in specific sequence contexts and generates multiple single base errors clustered in short patches at a rate that is unprecedented in comparison with other polymerases. The unique error specificity of pol zeta in vitro is consistent with Pol zeta-dependent mutagenic specificity reported in vivo. This fact, combined with the high rate of single base substitution errors and complex mutations observed here, indicates that pol zeta contributes to mutagenesis in vivo not only by extending mismatches made by other polymerases, but also by directly generating its own mismatches and then extending them.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Mutagênese , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , DNA/química , Mutação , Nucleotídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo , beta-Galactosidase/genética
6.
EMBO J ; 25(18): 4316-25, 2006 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16957771

RESUMO

DNA polymerase zeta (Polzeta) participates in translesion DNA synthesis and is involved in the generation of the majority of mutations induced by DNA damage. The mechanisms that license access of Polzeta to the primer terminus and regulate the extent of its participation in genome replication are poorly understood. The Polzeta-dependent damage-induced mutagenesis requires monoubiquitination of proliferating cell nuclear antigen (PCNA) that is triggered by exposure to mutagens. We show that Polzeta contributes to DNA replication and causes mutagenesis not only in response to DNA damage but also in response to malfunction of normal replicative machinery due to mutations in replication genes. These replication defects lead to ubiquitination of PCNA even in the absence of DNA damage. Unlike damage-induced mutagenesis, the Polzeta-dependent spontaneous mutagenesis in replication mutants is reduced in strains defective in both ubiquitination and sumoylation of Lys164 of PCNA. Additionally, studies of a PCNA mutant defective for functional interactions with Polzeta, but not for monoubiquitination by the Rad6/Rad18 complex demonstrate a role for PCNA in regulating the mutagenic activity of Polzeta separate from its modification at Lys164.


Assuntos
Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Dano ao DNA , Replicação do DNA/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Genes Fúngicos , Mutação , Fenótipo , Antígeno Nuclear de Célula em Proliferação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina/metabolismo , Raios Ultravioleta
7.
Proc Natl Acad Sci U S A ; 102(51): 18361-6, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16344468

RESUMO

In response to DNA damage, the Rad6/Rad18 ubiquitin-conjugating complex monoubiquitinates the replication clamp proliferating cell nuclear antigen (PCNA) at Lys-164. Although ubiquitination of PCNA is recognized as an essential step in initiating postreplication repair, the mechanistic relevance of this modification has remained elusive. Here, we describe a robust in vitro system that ubiquitinates yeast PCNA specifically on Lys-164. Significantly, only those PCNA clamps that are appropriately loaded around effector DNA by its loader, replication factor C, are ubiquitinated. This observation suggests that, in vitro, only PCNA present at stalled replication forks is ubiquitinated. Ubiquitinated PCNA displays the same replicative functions as unmodified PCNA. These functions include loading onto DNA by replication factor C, as well as Okazaki fragment synthesis and maturation by the PCNA-coordinated actions of DNA polymerase delta, the flap endonuclease FEN1, and DNA ligase I. However, whereas the activity of DNA polymerase zeta remains unaffected by ubiquitination of PCNA, ubiquitinated PCNA specifically activates two key enzymes in translesion synthesis: DNA polymerase eta, the yeast Xeroderma pigmentosum ortholog, and Rev1, a deoxycytidyl transferase that functions in organizing the mutagenic DNA replication machinery. We propose that ubiquitination of PCNA increases its functionality as a sliding clamp to promote mutagenic DNA replication.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/metabolismo , DNA/biossíntese , DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Ativação Enzimática , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Transporte Proteico , Ubiquitina/genética
8.
J Biol Chem ; 280(25): 23446-50, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15879599

RESUMO

DNA polymerase zeta (Pol zeta), a heterodimer of Rev3 and Rev7, is essential for DNA damage provoked mutagenesis in eukaryotes. DNA polymerases that function in a processive complex with the replication clamp proliferating cell nuclear antigen (PCNA) have been shown to possess a close match to the consensus PCNA-binding motif QxxLxxFF. This consensus motif is lacking in either subunit of Pol zeta, yet its activity is stimulated by PCNA. In particular, translesion synthesis of UV damage-containing DNA is dramatically stimulated by PCNA such that translesion synthesis rates are comparable with replication rates by Pol zeta on undamaged DNA. PCNA also stimulated translesion synthesis of a model abasic site by Pol zeta. Efficient PCNA stimulation required that PCNA was prevented from sliding off the damage-containing model oligonucleotide template-primer through the use of biotin-streptavidin bumpers or other blocks. Under those experimental conditions, facile bypass of the abasic site was also detected by DNA polymerase delta or eta (Rad30). The yeast DNA damage checkpoint clamp, consisting of Rad17, Mec3, and Ddc1, and an ortholog of human 9-1-1, has been implicated in damage-induced mutagenesis. However, this checkpoint clamp did not stimulate translesion synthesis by Pol zeta or by DNA polymerase delta.


Assuntos
Reparo do DNA/fisiologia , Antígeno Nuclear de Célula em Proliferação/fisiologia , Sequência de Bases , Dano ao DNA , Primers do DNA , DNA Polimerase Dirigida por DNA/isolamento & purificação , DNA Polimerase Dirigida por DNA/metabolismo , Raios Ultravioleta
9.
Crit Rev Biochem Mol Biol ; 40(2): 115-28, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15814431

RESUMO

Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase ot-primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase ca and recruits DNA polymerase S and the flap endonuclease FEN1 for elongation and in preparation for its requirement during maturation, respectively. Nick translation by the strand displacement action of DNA polymerase 8, coupled with the nuclease action of FEN1, results in processive RNA degradation until a proper DNA nick is reached for closure by DNA ligase I. In the event of excessive strand displacement synthesis, other factors, such as the Dna2 nuclease/helicase, are required to trim excess flaps. Paradoxically, the composition and activity of the much simpler leading strand machinery has not been clearly established. The burden of evidence suggests that DNA polymerase E normally replicates this strand,but under conditions of dysfunction, DNA polymerase 8 may substitute.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Células Eucarióticas/enzimologia , Animais , Cromossomos/genética , Cromossomos/metabolismo , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/química , Células Eucarióticas/metabolismo , Humanos
10.
Cell Cycle ; 4(2): 221-4, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15655350

RESUMO

During lagging strand DNA replication, the Okazaki fragment maturation machinery is required to degrade the initiator RNA with high speed and efficiency, and to generate with great accuracy a proper DNA nick for closure by DNA ligase. Several operational parameters are important in generating and maintaining a ligatable nick. These are the strand opening capacity of the lagging strand DNA polymerase delta (Pol delta ), and its ability to limit strand opening to that of a few nucleotides. In the presence of the flap endonuclease FEN1, Pol delta rapidly hands off the strand-opened product for cutting by FEN1, while in its absence, the ability of DNA polymerase delta to switch to its 3'-->5'-exonuclease domain in order to degrade back to the nick position is important in maintaining a ligatable nick. This regulatory system has a built-in redundancy so that dysfunction of one of these activities can be tolerated in the cell. However, further dysfunction leads to uncontrolled strand displacement synthesis with deleterious consequences, as is revealed by genetic studies of exonuclease-defective mutants of S. cerevisiae Pol delta. These same parameters are also important for other DNA metabolic processes, such as base excision repair, that depend on Pol delta for synthesis.


Assuntos
Replicação do DNA , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Acetiltransferases , DNA/fisiologia , DNA Ligases/fisiologia , DNA Polimerase III/genética , DNA Polimerase III/fisiologia , DNA Topoisomerases Tipo I/fisiologia , DNA Fúngico/genética , Exodesoxirribonucleases/fisiologia , Proteínas de Membrana/fisiologia , Mutação , Antígeno Nuclear de Célula em Proliferação/fisiologia , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
11.
Mol Cell Biol ; 25(1): 461-71, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15601866

RESUMO

Until recently, the only biological function attributed to the 3'-->5' exonuclease activity of DNA polymerases was proofreading of replication errors. Based on genetic and biochemical analysis of the 3'-->5' exonuclease of yeast DNA polymerase delta (Pol delta) we have discerned additional biological roles for this exonuclease in Okazaki fragment maturation and mismatch repair. We asked whether Pol delta exonuclease performs all these biological functions in association with the replicative complex or as an exonuclease separate from the replicating holoenzyme. We have identified yeast Pol delta mutants at Leu523 that are defective in processive DNA synthesis when the rate of misincorporation is high because of a deoxynucleoside triphosphate (dNTP) imbalance. Yet the mutants retain robust 3'-->5' exonuclease activity. Based on biochemical studies, the mutant enzymes appear to be impaired in switching of the nascent 3' end between the polymerase and the exonuclease sites, resulting in severely impaired biological functions. Mutation rates and spectra and synergistic interactions of the pol3-L523X mutations with msh2, exo1, and rad27/fen1 defects were indistinguishable from those observed with previously studied exonuclease-defective mutants of the Pol delta. We conclude that the three biological functions of the 3'-->5' exonuclease addressed in this study are performed intramolecularly within the replicating holoenzyme.


Assuntos
DNA Polimerase III/fisiologia , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , DNA Polimerase III/química , DNA Polimerase Dirigida por DNA/metabolismo , Diploide , Haploidia , Leucina/química , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
12.
Genes Dev ; 18(22): 2764-73, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15520275

RESUMO

During each yeast cell cycle, approximately 100,000 nicks are generated during lagging-strand DNA replication. Efficient nick processing during Okazaki fragment maturation requires the coordinated action of DNA polymerase delta (Pol delta) and the FLAP endonuclease FEN1. Misregulation of this process leads to the accumulation of double-stranded breaks and cell lethality. Our studies highlight a remarkably efficient mechanism for Okazaki fragment maturation in which Pol delta by default displaces 2-3 nt of any downstream RNA or DNA it encounters. In the presence of FEN1, efficient nick translation ensues, whereby a mixture of mono- and small oligonucleotides are released. If FEN1 is absent or not optimally functional, the ability of Pol delta to back up via its 3'-5'-exonuclease activity, a process called idling, maintains the polymerase at a position that is ideal either for ligation (in case of a DNA-DNA nick) or for subsequent engagement by FEN1 (in case of a DNA-RNA nick). Consistent with the hypothesis that DNA polymerase epsilon is the leading-strand enzyme, we observed no idling by this enzyme and no cooperation with FEN1 for creating a ligatable nick.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , DNA/metabolismo , Endonucleases Flap/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , DNA Helicases/metabolismo , Primers do DNA , Exonucleases/metabolismo , Oligonucleotídeos/metabolismo
13.
J Biol Chem ; 279(3): 1907-15, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14594808

RESUMO

We have carried out a domain analysis of POL32, the third subunit of Saccharomyces cerevisiae DNA polymerase delta (Pol delta). Interactions with POL31, the second subunit of Pol delta, are specified by the amino-terminal 92 amino acids, whereas interactions with the replication clamp proliferating cell nuclear antigen (PCNA, POL30) reside at the extreme carboxyl-terminal region. Pol32 binding, in vivo and in vitro, to the large subunit of DNA polymerase alpha, POL1, requires the carboxyl-proximal region of Pol32. The amino-terminal region of Pol32 is essential for damage-induced mutagenesis. However, the presence of its carboxyl-terminal PCNA-binding domain enhances the efficiency of mutagenesis, particularly at high loads of DNA damage. In vitro, in the absence of effector DNA, the PCNA-binding domain of Pol32 is essential for PCNA-Pol delta interactions. However, this domain has minimal importance for processive DNA synthesis by the ternary DNA-PCNA-Pol delta complex. Rather, processivity is determined by PCNA-binding domains located in the Pol3 and/or Pol31 subunits. Using diagnostic PCNA mutants, we show that during DNA synthesis the carboxyl-terminal domain of Pol32 interacts with the carboxyl-terminal region of PCNA, whereas interactions of the other subunit(s) of Pol delta localize largely to a hydrophobic pocket at the interdomain connector loop region of PCNA.


Assuntos
DNA Polimerase III/química , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alelos , Sítios de Ligação , DNA Polimerase I/química , DNA Polimerase III/fisiologia , Fenótipo , Antígeno Nuclear de Célula em Proliferação/química , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...