Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34359386

RESUMO

This study aimed to map the nutritional profile and bioactivities of five microalgae that can be grown in Northwest Europe or areas with similar cultivation conditions. Next to the biochemical composition, the in vitro digestibility of carbohydrates, proteins, and lipids was studied for Chlamydomonas nivalis, Porphyridium purpureum, Chlorella vulgaris, Nannochloropsis gaditana, and Scenedesmus species biomass. These microalgae were also assessed for their ability to inhibit the angiotensin-1-converting enzyme (ACE-1, EC 3.4.15.1), which is known to play a role in the control of blood pressure in mammals. Large differences in organic matter solubility after digestion suggested that a cell disruption step is needed to unlock the majority of the nutrients from N. gaditana and Scenedesmus species biomass. Significant amounts of free glucose (16.4-25.5 g glucose/100 g dry algae) were detected after the digestion of C. nivalis, P. purpureum, and disrupted Scenedesmus. The fatty acid profiles showed major variations, with particularly high Ω-3 fatty acid levels found in N. gaditana (5.5 ± 0.5 g/100 g dry algae), while lipid digestibility ranged from 33.3 ± 6.5% (disrupted N. gaditana) to 67.1 ± 11.2% (P. purpureum). C. vulgaris and disrupted N. gaditana had the highest protein content (45-46% of dry matter), a nitrogen solubility after digestion of 65-71%, and the degree of protein hydrolysis was determined as 31% and 26%, respectively. Microalgae inhibited ACE-1 by 73.4-87.1% at physiologically relevant concentrations compared to a commercial control. These data can assist algae growers and processors in selecting the most suitable algae species for food or feed applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...