Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(48): 20704, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34874396

RESUMO

Correction for 'Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds' by L. Fernandez et al., Nanoscale, 2020, 12, 22258-22267, DOI: 10.1039/D0NR04964F.

2.
Phys Rev Lett ; 125(22): 226801, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315425

RESUMO

We performed x-ray magnetic circular dichroism (XMCD) measurements on heterostructures comprising topological insulators (TIs) of the (Bi,Sb)_{2}(Se,Te)_{3} family and the magnetic insulator EuS. XMCD measurements allow us to investigate element-selective magnetic proximity effects at the very TI/EuS interface. A systematic analysis reveals that there is neither significant induced magnetism within the TI nor an enhancement of the Eu magnetic moment at such interface. The induced magnetic moments in Bi, Sb, Te, and Se sites are lower than the estimated detection limit of the XMCD measurements of ∼10^{-3} µ_{B}/at.

3.
Nanoscale ; 12(43): 22258-22267, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33146198

RESUMO

One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer.

4.
Sci Adv ; 6(12): eaax1085, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32219155

RESUMO

We show that hybrid MnOx/C60 heterojunctions can be used to design a storage device for spin-polarized charge: a spin capacitor. Hybridization at the carbon-metal oxide interface leads to spin-polarized charge trapping after an applied voltage or photocurrent. Strong electronic structure changes, including a 1-eV energy shift and spin polarization in the C60 lowest unoccupied molecular orbital, are then revealed by x-ray absorption spectroscopy, in agreement with density functional theory simulations. Muon spin spectroscopy measurements give further independent evidence of local spin ordering and magnetic moments optically/electronically stored at the heterojunctions. These spin-polarized states dissipate when shorting the electrodes. The spin storage decay time is controlled by magnetic ordering at the interface, leading to coherence times of seconds to hours even at room temperature.

5.
Nanotechnology ; 31(2): 025702, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31546237

RESUMO

The sensitivity of circularly polarized x-ray resonant magnetic scattering (CXRMS) to chiral asymmetry has been demonstrated. The study was performed on a 2D array of Permalloy (Py) square nanomagnets of 700 nm lateral size arranged in a chess pattern, in a square lattice of 1000 nm lattice parameter. Previous x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) images on this sample showed the formation of vortices at remanence and a preference in their chiral state. The magnetic hysteresis loops of the array along the diagonal axis of the squares indicate a non-negligible and anisotropic interaction between vortices. The intensity of the magnetic scattering using circularly polarized light along one of the diagonal axes of the square magnets becomes asymmetric in intensity in the direction transversal to the incident plane at fields where the vortex states are formed. The asymmetry sign is inverted when the direction of the applied magnetic field is inverted. The result is the expected in the presence of an unbalanced chiral distribution. The effect is observed by CXRMS due to the interference between the charge scattering and the magnetic scattering.

6.
Nanoscale ; 10(1): 277-283, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29210429

RESUMO

Lanthanides (Ln) bis-phthalocyanine (Pc), the so-called LnPc2double decker, are a promising class of molecules with a well-defined magnetic anisotropy. In this work, we investigate the magnetic properties of LnPc2 molecules UHV-deposited on a graphene/Ni(111) substrate and how they modify when an Au layer is intercalated between Ni and graphene. X-ray absorption spectroscopy (XAS), and linear and magnetic circular dichroism (XLD and XMCD) were used to characterize the systems and probe the magnetic coupling between LnPc2 molecules and the Ni substrate through graphene, both gold-intercalated and not. Two types of LnPc2 molecules (Ln = Tb, Er) with a different magnetic anisotropy (easy-axis for Tb, easy-plane for Er) were considered. XMCD shows an antiferromagnetic coupling between Ln and Ni(111) even in the presence of the graphene interlayer. Au intercalation causes the vanishing of the interaction between Tb and Ni(111). In contrast, in the case of ErPc2, we found that the gold intercalation does not perturb the magnetic coupling. These results, combined with the magnetic anisotropy of the systems, suggest the possible importance of the magnetic dipolar field contribution for determining the magnetic behaviour.

7.
Nat Commun ; 8(1): 699, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951545

RESUMO

Graphene-spaced magnetic systems with antiferromagnetic exchange-coupling offer exciting opportunities for emerging technologies. Unfortunately, the in-plane graphene-mediated exchange-coupling found so far is not appropriate for realistic exploitation, due to being weak, being of complex nature, or requiring low temperatures. Here we establish that ultra-thin Fe/graphene/Co films grown on Ir(111) exhibit robust perpendicular antiferromagnetic exchange-coupling, and gather a collection of magnetic properties well-suited for applications. Remarkably, the observed exchange coupling is thermally stable above room temperature, strong but field controllable, and occurs in perpendicular orientation with opposite remanent layer magnetizations. Atomistic first-principles simulations provide further ground for the feasibility of graphene-spaced antiferromagnetic coupled structures, confirming graphene's direct role in sustaining antiferromagnetic superexchange-coupling between the magnetic films. These results provide a path for the realization of graphene-based perpendicular synthetic antiferromagnetic systems, which seem exciting for fundamental nanoscience or potential use in spintronic devices.Antiferromagnetic spintronics may pave the way to innovative information storage devices with perpendicular coupling, however experimental demonstrations are still sparse. Here, the authors demonstrate a graphene-mediated perpendicular antiferromagnetic coupling between Fe and Co layers in a Fe/graphene/Co sandwich structure.

8.
Nano Lett ; 16(7): 4230-5, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27247988

RESUMO

Materials that exhibit ferromagnetism, interfacial stability, and tunability are highly desired for the realization of emerging magnetoelectronic phenomena in heterostructures. Here we present the GdAg2 monolayer alloy, which possesses all such qualities. By combining X-ray absorption, Kerr effect, and angle-resolved photoemission with ab initio calculations, we have investigated the ferromagnetic nature of this class of Gd-based alloys. The Curie temperature can increase from 19 K in GdAu2 to a remarkably high 85 K in GdAg2. We find that the exchange coupling between Gd atoms is barely affected by their full coordination with noble metal atoms, and instead, magnetic coupling is effectively mediated by noble metal-Gd hybrid s,p-d bands. The direct comparison between isostructural GdAu2 and GdAg2 monolayers explains how the higher degree of surface confinement and electron occupation of such hybrid s,p-d bands promote the high Curie temperature in the latter. Finally, the chemical composition and structural robustness of the GdAg2 alloy has been demonstrated by interfacing them with organic semiconductors or magnetic nanodots. These results encourage systematic investigations of rare-earth/noble metal surface alloys and interfaces, in order to exploit them in magnetoelectronic applications.

9.
Phys Rev Lett ; 113(15): 156802, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375731

RESUMO

Recent findings show the emergence of two-dimensional electron gases (2DEGs) at LaAlO(3)/SrTiO(3) interfaces along different orientations; yet details on band reconstructions have remained so far unknown. Via x-ray linear dichroism spectroscopy, we demonstrate that crystal symmetry imposes distinctive 2DEG orbital hierarchies on (001)-and (110)-oriented quantum wells, allowing selective occupancy of states of different symmetry. Such orientational tuning expands the possibilities for electronic engineering of 2DEGs and opens up enticing opportunities to understand the link between orbital symmetry and complex correlated states at LaAlO(3)/SrTiO(3) quantum wells.

10.
Phys Rev Lett ; 106(6): 067601, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21405496

RESUMO

A long-standing puzzle regarding the Si(111) − 2 × 1 surface has been solved. The surface energy gap previously determined by photoemission on heavily n-doped crystals was not compatible with a strongly bound exciton known from other considerations to exist. New low-temperature angle-resolved photoemission and scanning tunneling microscopy data, together with theory, unambiguously reveal that isomers with opposite bucklings and different energy gaps coexist on such surfaces. The subtle energetics between the isomers, dependent on doping, leads to a reconciliation of all previous results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...