Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 5(8): e255, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27526109

RESUMO

Stimulating tumor cell senescence and apoptosis are proven methods for therapeutically combating cancer. However, senescence and apoptosis are conventionally viewed as parallel, not sequential, processes. We have discovered that the metastasis-promoting phosphatase, PRL-3, is transcriptionally regulated by the NF-ĸB pathway in triple-negative breast cancer (TNBC) cells, and that PRL-3 knockdown elicits an autocrine tumor necrosis factor receptor 1 (TNF-R1) feedback loop that results in TNBC cell senescence followed by apoptosis. Knockdown of PRL-3 leads to rapid G1 cell cycle arrest and induction of a strong TNFα cytokine response that promotes a period of cellular senescence through TNF-R1-mediated activation of NF-ĸB. Senescent PRL-3 knockdown cells subsequently underwent apoptosis as a result of increased TNF-R1 signaling through the TNFα-associated extrinsic death pathway, shunting signaling away from the NF-ĸB cascade. These data suggest that TNF-R1 signaling dynamically re-programs after PRL-3 knockdown, from sustaining cell senescence through NF-ĸB to promoting apoptosis through TNF-R1 internalization and caspase-8 activation. The molecular mechanisms that determine the survival-death balance of TNF-R1 signaling are poorly understood, despite the fact that TNF-R1 has been extensively studied. Our results describe PRL-3 knockdown as a novel survival-death balance modifier of the TNF-R1 pathway, and show that senescent TNBC tumor cells can be sensitized to undergo apoptosis in a sequential manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...