Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836212

RESUMO

A comprehensive comparative analysis of the carbohydrate composition (soluble sugars and pectins) of fruit tissues of Malus baccata, Malus mandshurica, Malus chamardabanica, and Malus sachalinensis, characteristic of the vast territory of Eastern Siberia and the Far East, was carried out. It was shown that a large part of the soluble carbohydrates of the studied species were represented by transport sugars-sorbitol and sucrose. These compounds also provided the main variability in the carbohydrate composition of fruits in the studied material. The polymers pectins and protopectins isolated from the studied fruits were highly methoxylated (up to 60-70%), and their content averaged about 6% of dry weight. The greatest length of pectin polymers was found in the fruit tissues of M. chamardabanica and M. sachalinensis. Data on elemental analysis of fractions of pectins and protopectins of all studied species showed the absence of potentially toxic concentrations of heavy metals. Of note is the rather high content of calcium in both polymer fractions of the four studied species, while its content in protopectin is significantly higher. In addition, in all cases, the presence of low-molecular-weight oligosaccharide molecules with a low-dispersed linear structure was revealed in the tissues of the fruits. It is worth noting that the high content of ascorbic acid was observed in the fruits of all studied species. In addition to being of fundamental interest, information about the carbohydrate composition of the wild Malus species can be useful for apple breeding when choosing sources of genes underlying useful traits.

2.
Hereditas ; 159(1): 31, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35953844

RESUMO

BACKGROUND: Apple production in Sweden and elsewhere is being threatened by the fungus, Neonectria ditissima, which causes a disease known as European canker. The disease can cause extensive damage and the removal of diseased wood and heavily infected trees can be laborious and expensive. Currently, there is no way to eradicate the fungus from infected trees and our knowledge of the infection process is limited. Thus, to target and modify genes efficiently, the genetic transformation technique developed for N. ditissima back in 2003 was modified. RESULTS: The original protocol from 2003 was upgraded to use enzymes currently available in the market for making protoplasts. The protoplasts were viable, able to uptake foreign DNA, and able to regenerate back into a mycelial colony, either as targeted gene-disruption mutants or as ectopic mutants expressing the green fluorescent protein (GFP). CONCLUSIONS: A new genetic transformation protocol has been established and the inclusion of hydroxyurea in the buffer during the protoplast-generation step greatly increased the creation of knockout mutants via homologous recombination. Pathogenicity assays using the GFP-mutants showed that the mutants were able to infect the host and cause disease.


Assuntos
Hypocreales , Malus , Hypocreales/genética , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Árvores/microbiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-34071913

RESUMO

Staple crop yield, quality and sustainable production are critical for domestic food security in developing countries. In Tajikistan, both seed-borne diseases and protein quality impair the yield and the quality of the major staple crop, wheat. Here, we used a detailed two-year survey of fields on 21 wheat-producing farms in Tajikistan, combined with lab analyses on seed health and protein quality, to investigate the presence of seed-borne diseases and bread-making quality in Tajik wheat. Seed samples were collected for the analysis of: (i) the presence of common bunt (Tilletia spp.) using the centrifuge wash test, (ii) the major pathogenic fungi on/in the seed using the agar plate test and (iii) the protein amount and size distribution using size-exclusion high-performance liquid chromatography (SE-HPLC). Field occurrence of common bunt and loose smut was generally low (3 farms in year one (14%) showed common bunt occurrence), but the presence of fungi was observed microscopically on most seed samples (on seeds from 19 out of 21 farms = 91%). Tilletia laevis was the dominant agent in common bunt (present in 19 farms compared to T. tritici present in 6 farms). Altogether, 18 different fungi were identified from seed samples by microscopy. Protein composition, measured with high-performance liquid chromatography as protein amount and size distribution (known to correlate with bread-making quality), differed significantly between samples from different farms and years, although the farm type and land elevation of the farm were not the determinants of the protein composition. The presence of certain fungi on the seed correlated significantly with the protein quality and could then have an impact on the bread-making quality of the Tajik wheat. The presence of seed-borne diseases, a low protein content and weak gluten were the characteristics of the majority of the grain samples, mostly irrespective of farm type and farmer's knowledge. For sustainable development of the Tajik farming systems, and to strengthen the food security of the country, the knowledge of Tajik farmers needs to be increased independently of farm type; in general, plant breeding is required and certified seeds need to be made available throughout the country.


Assuntos
Segurança Alimentar , Triticum , Basidiomycota , Melhoramento Vegetal , Sementes , Tadjiquistão
4.
Front Plant Sci ; 8: 1923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176988

RESUMO

Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.

5.
Hereditas ; 154: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559761

RESUMO

Wheat is globally one of the most important crops. With the current human population growth rate, there is an increasing need to raise wheat productivity by means of plant breeding, along with development of more efficient and sustainable agricultural systems. Damage by pathogens and pests, in combination with adverse climate effects, need to be counteracted by incorporating new germplasm that makes wheat more resistant/tolerant to such stress factors. Rye has been used as a source for improved resistance to pathogens and pests in wheat during more than 50 years. With new devastating stem and yellow rust pathotypes invading wheat at large acreage globally, along with new biotypes of pest insects, there is renewed interest in using rye as a source of resistance. Currently the proportion of wheat cultivars with rye chromatin varies between countries, with examples of up to 34%. There is mainly one rye source, Petkus, that has been widely exploited and that has contributed considerably to raise yields and increase disease resistance in wheat. Successively, the multiple disease resistances conferred by this source has been overcome by new pathotypes of leaf rust, yellow rust, stem rust and powdery mildew. However, there are several other rye sources reported to make wheat more resistant to various biotic constraints when their rye chromatin has been transferred to wheat. There is also development of knowledge on how to produce new rye translocation, substitution and addition lines. Here we compile information that may facilitate decision making for wheat breeders aiming to transfer resistance to biotic constraints from rye to elite wheat germplasm.


Assuntos
Resistência à Doença/genética , Secale/genética , Triticum/genética , Cruzamentos Genéticos , Melhoramento Vegetal , Translocação Genética
6.
Hortic Res ; 3: 16057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917289

RESUMO

Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.

8.
BMC Plant Biol ; 16(1): 130, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277533

RESUMO

BACKGROUND: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. RESULTS: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. CONCLUSIONS: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.


Assuntos
Fluxo Gênico , Variação Genética , Malus/genética , Europa (Continente) , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Malus/classificação , Malus/embriologia , Malus/metabolismo , Repetições de Microssatélites , Filogenia
9.
Hereditas ; 153: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096769

RESUMO

BACKGROUND: Neonectria ditissima is one of the most important fungal pathogens of apple trees, where it causes fruit tree canker. Information about the amount and partitioning of genetic variation of this fungus could be helpful for improving orchard management strategies and for breeding apple cultivars with high levels of genetically determined resistance. In this study single-spore Neonectria isolates originating from both the same and from different perithecia, apple cultivars and apple orchards in Sweden and Belgium, were evaluated for AFLP- and SSR-based genetic similarity and for mating system. RESULTS: Seven SSR loci produced a total of 31 alleles with an average of 4 alleles per locus, while 11 AFLP primer combinations produced an average of 35 fragments per primer combination and 71 % polymorphic fragments. An AFLP-based analysis of molecular variance (AMOVA) revealed that 89 % of the variation was found within orchards and 11 % between orchards. Genetic similarity among the studied isolates was illustrated with a principal coordinate analyseis (PCoA) and a dendrogram. AFLP-based Jaccard's similarity coefficients were the highest when single-ascospore isolates obtained from the same perithecium were compared, medium-high for isolates from different perithecia on the same tree, and lowest when isolates from different trees were compared. CONCLUSIONS: Based on the results of PCoA and AMOVA analysis, isolates from the same or geographically close orchards did not group together. Since AFLP profiles differed also when single-ascospore isolates from the same perithecium were compared, the mating system of N. ditissima is most likely heterothallic.


Assuntos
Variação Genética , Hypocreales/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Árvores/microbiologia , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Bélgica , DNA Fúngico/genética , Marcadores Genéticos , Genética Populacional , Repetições de Microssatélites , Suécia
10.
Hereditas ; 153: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28096772

RESUMO

BACKGROUND: Early blight, caused by the fungus Alternaria solani, occurs on potato mainly in the south-eastern part of Sweden, but also in other parts of the country. The aim of this study was to investigate the genetic diversity of A. solani populations from different potato growing regions in south-eastern Sweden using AFLP marker analysis. In addition, the cultured isolates were examined for substitutions in the gene encoding cytochrome b, associated with loss of sensitivity against QoI fungicides. RESULTS: Nei's gene diversity index for the Swedish populations of A. solani revealed a gene diversity of up to 0.20. Also genetic differentiation was observed among populations of A. solani from different locations in south-eastern Sweden. The mitochondrial genotype of the isolates of A. solani was determined and both known genotypes, GI (genotype 1) and GII (genotype 2), were found among the isolates. The occurrence of the F129L substitution associated with a loss of sensitivity to strobilurins was confirmed among the GII isolates. In vitro conidial germination tests verified that isolates containing the F129L substitution had reduced sensitivity to azoxystrobin and, at a lower extent, to pyraclostrobin. CONCLUSIONS: Genetic diversity was relatively high among isolates of A. solani in south-eastern part of Sweden. F129L substitutions, leading to reduced sensitivity to strobilurins, have been established in field populations, which may have implications for the future efficacy of QoI fungicides.


Assuntos
Alternaria/genética , Farmacorresistência Fúngica/genética , Variação Genética , Alternaria/efeitos dos fármacos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Carbamatos/farmacologia , Citocromos b/genética , DNA Fúngico/genética , Fungicidas Industriais/farmacologia , Genótipo , Metacrilatos/farmacologia , Mitocôndrias/genética , Doenças das Plantas/microbiologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Solanum tuberosum/microbiologia , Estrobilurinas , Suécia
11.
Hereditas ; 151(4-5): 81-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25363275

RESUMO

The genetic diversity of 23 chickpea accessions representing Kyrgyz landraces and cultivars, ICARDA breeding lines, Spanish and Turkish cultivars was characterized using nine microsatellite (SSR) markers which generated a total of 122 alleles. The number of alleles (Na) per locus varied from 9 to 20. The observed heterozygosity (Ho) ranged between 0.05 and 0.43 (average 0.13) whereas both the expected heterozygosity (He) and polymorphic information content (PIC) ranged from 0.71 to 0.90 (average 0.83). Analysis of molecular variance (AMOVA) showed that 62% of the total genetic variation was found within accessions while the remaining 38% was found among accessions. Principal coordinate analysis (PCoA) indicated the presence of two groups. The two Kyrgyz cultivars were found apart from these groups. Cluster analysis generally confirmed the results of PCoA and also separated the Kyrgyz cultivars from the subcluster formed by Kyrgyz landraces and the subclusters formed by breeding lines from ICARDA along with landraces from Turkey and Spain. In addition, protein content and mineral concentration were determined. Protein content and mineral concentrations for Ca, S, Mg, P, K, Fe, Mn, Cu and Zn varied significantly among accessions. The results show that Kyrgyz germplasm provides a source of diversity for improvement of chickpea.


Assuntos
Cicer/genética , Variação Genética , Repetições de Microssatélites , Alelos , Cruzamento , DNA de Plantas/genética , Heterozigoto , Quirguistão , Análise de Componente Principal , Análise de Sequência de DNA , Espanha , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...