Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(2): 1415-1425, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490801

RESUMO

In this work, Ru x Pd y alloy nanoparticles were uniformly decorated on a two-dimensional reduced graphene oxide (rGO) sheet by an in situ chemical co-reduction process. The resulting products were characterized by various physiochemical techniques such as X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Further, the synthesized Ru x Pd y @rGO nanocomposites have been employed as a heterogeneous catalyst for three different catalytic reactions: (1) dehydrogenation of aqueous ammonia borane (AB); (2) hydrogenation of aromatic nitro compounds using ammonia borane as the hydrogen source, and (3) for the synthesis of aromatic azo derivatives. The present work illustrates the sustainable anchoring of metal nanoparticles over the surface of rGO nanosheets, which could be used for multifarious catalytic reactions.

2.
RSC Adv ; 10(14): 8140-8151, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497821

RESUMO

In this study, dendritic fibrous core-shell silica particles having cubic morphology with uniform and vertical nanochannels have been successfully synthesised. The synthesized dendritic fibrous nanosilica over a cubic core (cSiO2@DFNS) have been characterized by using various techniques, such as powder X-ray diffraction, TEM, FE-SEM, TGA EDS, FT-IR and N2 adsorption-desorption experiments. The prepared DFNS particles demonstrated a very high surface area and pore diameter. Amine groups were functionalized on the fibres of cSiO2@DFNS and after that silver nanoparticles could be successfully immobilized on amine functionalized cubic silica particles. Due to the presence of a high surface area and a uniform pore diameter, the silver nanoparticle loaded cSiO2@DFNS could be successfully employed as an efficient and recoverable catalyst for reduction of toxic aromatic nitro compounds and degradation of organic dyes. Higher catalytic activity of the prepared material could be attributed to its fibrous morphology which could facilitate proper interactions of the reactants molecules with the silver nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...