Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(25): 6462-6467, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28588139

RESUMO

Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χij). In this article, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χAC [Formula: see text] 0), promotes organization into a unique mixed-domain lamellar morphology, which we designate LAMP Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM3) with ABCB periods. Complementary small-angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations and predicts that LAMP is thermodynamically stable below a critical χAC, above which LAM3 emerges. Both experiments and theory expose close analogies to ABA' triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. These conclusions provide fresh opportunities for block polymer design with potential consequences spanning all self-assembling soft materials.

2.
Phys Chem Chem Phys ; 13(14): 6442-51, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21387044

RESUMO

The impact of hydration on the transport properties of microcrystalline Sm(0.15)Ce(0.85)O(1.925) has been examined. Dense, polycrystalline samples were obtained by conventional ceramic processing and the grain boundary regions were found, by high resolution transmission electron microscopy, to be free of impurity phases. Impedance spectroscopy measurements were performed over the temperature range 250 to 650 °C under dry, H(2)O-saturated, and D(2)O-saturated synthetic air; and over the temperature range 575 to 650 °C under H(2)-H(2)O atmospheres. Under oxidizing conditions humidification by either H(2)O or D(2)O caused a substantial increase in the grain boundary resistivity, while leaving the bulk (or grain interior) properties unchanged. This unusual behavior, which was found to be both reversible and reproducible, is interpreted in terms of the space-charge model, which adequately explains all the features of the measured data. It is found that the space-charge potential increases by 5-7 mV under humidification, in turn, exacerbating oxygen vacancy depletion in the space-charge regions and leading to the observed reduction in grain boundary conductivity. It is proposed that the heightened space-charge potential reflects a change in the relative energetics of vacancy creation in the bulk and at the grain boundary interfaces as a result of water uptake into the grain boundary core. Negligible bulk water uptake is detected under both oxidizing and reducing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...