Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 97(6): 1518-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27459782

RESUMO

Intraspecific diversity, particularly of foundation species, can significantly affect population, community, and ecosystem processes. Examining how genetic diversity relates to demographic traits provides a key mechanistic link from genotypic and phenotypic variation of taxa with complex life histories to their population dynamics. We conducted a field experiment to assess how two metrics of intraspecific diversity (cohort diversity, the number of independent juvenile cohorts created from different adult source populations, and genetic relatedness, genetic similarity among individuals within and across cohorts) affect the survivorship, growth, and recruitment of the foundation species Crassostrea virginica. To assess the effects of both cohort diversity and genetic relatedness on oyster demographic traits under different environmental conditions, we manipulated juvenile oyster diversity and predator exposure (presence/absence of a cage) at two sites differing in resource availability and predation intensity. Differences in predation pressure between sites overwhelmingly determined post-settlement survivorship of oysters. However, in the absence of predation (i.e., cage treatment), one or both metrics of intraspecific diversity, in addition to site, influenced long-term survivorship, growth, and recruitment. While both cohort diversity and genetic relatedness were negatively associated with long-term survivorship, genetic relatedness alone showed a positive association with growth and cohort diversity alone showed a positive association with recruitment. Thus, our results demonstrate that in the absence of predation, intraspecific diversity can affect multiple demographic traits of a foundation species, but the relative importance of these effects depends on the environmental context. Moreover, the magnitude and direction of these effects vary depending on the diversity metric, cohort diversity or genetic relatedness, suggesting that although they are inversely related in this system, each captures sufficiently different components of intraspecific diversity. Given the global loss of oyster reef habitat and rapid decline in oyster population size, our results are particularly relevant to management and restoration. In addition, aquaculture, which commonly excludes predators during early life history stages, may benefit from incorporation of oyster cohort diversity into standard practice.


Assuntos
Variação Genética , Ostreidae/fisiologia , Animais , Ostreidae/genética , Dinâmica Populacional , Especificidade da Espécie
2.
PLoS One ; 10(8): e0125095, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26275296

RESUMO

Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary's salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs.


Assuntos
Secas , Ostreidae , Animais , Ecossistema , Florida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...