Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrophys J ; 535(1): L17-L20, 2000 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-10828998

RESUMO

We present the first grating-resolution X-ray spectra of the Seyfert 1 galaxy NGC 3783, obtained with the High Energy Transmission Grating Spectrometer on the Chandra X-Ray Observatory. These spectra reveal many narrow absorption lines from the H-like and He-like ions of O, Ne, Mg, Si, S, and Ar as well as Fe xvii-Fe xxi L-shell lines. We have also identified several weak emission lines, mainly from O and Ne. The absorption lines are blueshifted by a mean velocity of approximately 440+/-200 km s-1 and are not resolved, indicating a velocity dispersion within the absorbing gas of a few hundred kilometers per second or less. We measure the lines' equivalent widths and compare them with the predictions of photoionization models. The best-fitting model has a microturbulence velocity of 150 km s-1 and a hydrogen column density of 1.3x1022 cm-2. The measured blueshifts and inferred velocity dispersions of the X-ray absorption lines are consistent with those of the strongest UV absorption lines observed in this object. However, simple models that propose to strictly unify the X-ray and UV absorbers have difficulty explaining simultaneously the X-ray and UV absorption-line strengths.

2.
Astrophys J ; 534(2): L139-L142, 2000 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-10813667

RESUMO

The ACIS front-illuminated CCDs on board the Chandra X-Ray Observatory were damaged in the extreme environment of the Earth's radiation belts, resulting in enhanced charge transfer inefficiency (CTI). This produces a row dependence in gain, event grade, and energy resolution. We model the CTI as a function of input photon energy, including the effects of detrapping (charge trailing), shielding within an event (charge in the leading pixels of the 3x3 event island protects the rest of the island by filling traps), and nonuniform spatial distribution of traps. This technique cannot fully recover the degraded energy resolution, but it reduces the position dependence of gain and grade distributions. By correcting the grade distributions as well as the event amplitudes, we can improve the instrument's quantum efficiency. We outline our model for CTI correction and discuss how the corrector can improve astrophysical results derived from ACIS data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...