Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124239, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579426

RESUMO

The knowledge of variations in the composition of venoms from different snakes is important from both theoretical and practical points of view, in particular, at developing and selecting an antivenom. Many studies on this topic are conducted with pooled venoms, while the existence and significance of variations in the composition of venoms between individual snakes of the same species are emphasized by many authors. It is important to study both inter- and intra-specific, including intra-population, venom variations, because intra-specific variations in the venom composition may affect the effectiveness of antivenoms as strongly as inter-specific. In this work, based on venom Raman spectroscopy with principal component analysis, we assessed the variations in venoms of individual snakes of the Vipera nikolskii species from two populations and compared these intra-specific variations with inter-specific variations (with regard to the other related species). We demonstrated intra-specific (inter- and intra-population) differences in venom compositions which are smaller than inter-specific variations. We also assessed the compositions of V. nikolskii venoms from two populations to explain inter-population differences. The method used is rapid and requires virtually no preparation of samples, used in extremely small quantities, allowing the venoms of individual snakes to be analyzed. In addition, the method is informative and capable of detecting fairly subtle differences in the composition of venoms.


Assuntos
Análise Espectral Raman , Peçonhas , Antivenenos
2.
Opt Lett ; 47(1): 86-89, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951887

RESUMO

The generation of terahertz radiation in a photoconductive emitter based on nitrogen-doped single-crystal diamond was realized for the first time. Under 400 nm femtosecond laser pumping, the performance of diamond antennas with different dopant levels was investigated and compared with a reference ZnSe antenna. Terahertz waveforms and corresponding spectra were measured. A low saturation level for high-nitrogen-containing diamond substrate was revealed. The results indicate the prospects of doped diamond as a material for high-efficiency large-aperture photoconductive antennas.

3.
Opt Lett ; 43(18): 4406-4409, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211876

RESUMO

In this Letter, we show experimentally for the first time, to the best of our knowledge, the possibility to observe the effect of polarization mutual action of three elliptically polarized waves, with one of them at terahertz frequency, when they propagate in the isotropic nonlinear medium. When three light pulses are propagated at frequencies ω, 2ω, and ωTHz through liquid nitrogen, we observed the rotation of the ellipse main axis and the ellipticity change. We have shown that this effect is very well described theoretically in the framework of a physical approach analogous to the self-rotation of the polarization ellipse first described in 1964 by Maker et al., but expanded for the case of multi-frequency interaction.

4.
Sci Rep ; 4: 4007, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24500084

RESUMO

Graphene has recently become a unique playground for studying light-matter interaction effects in low-dimensional electronic systems. Being of strong fundamental importance, these effects also open a wide range of opportunities in photonics and optoelectronics. In particular, strong and broadband light absorption in graphene allows one to achieve high carrier densities essential for observation of nonlinear optical phenomena. Here, we make use of strong photon-drag effect to generate and optically manipulate ultrafast photocurrents in graphene at room temperature. In contrast to the recent reports on injection of photocurrents in graphene due to external or built-in electric field effects and by quantum interference, we force the massless charge carriers to move via direct transfer of linear momentum from photons of incident laser beam to excited electrons in unbiased sample. Direction and amplitude of the drag-current induced in graphene are determined by polarization, incidence angle and intensity of the obliquely incident laser beam. We also demonstrate that the irradiation of graphene with two laser beams of the same wavelength offers an opportunity to manipulate the photocurrents in time domain. The obtained all-optical control of the photocurrents opens new routes towards graphene based high-speed and broadband optoelectronic devices.

5.
Nano Lett ; 11(4): 1540-5, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21443162

RESUMO

We report the ultrafast light-induced absorbance change in CVD-grown multilayer graphene. Using femtosecond pump-probe measurements in 1100-1800 nm spectral range, we revealed broadband absorbance change when the probe photon energy was higher than that of the pump photon. The observed phenomenon is interpreted in terms of the Auger recombination and impact ionization playing a significant role in the dynamics of photoexcited carriers in graphene.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Luz , Teste de Materiais , Tamanho da Partícula , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...