Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38140937

RESUMO

Metastasis of breast cancer cells to distant tissue sites is responsible for the majority of deaths associated with breast cancer. Previously we have examined the role of class I myosin motor protein, myosin 1e (myo1e), in cancer metastasis using the Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) mouse model. Mice deficient in myo1e formed tumors with a more differentiated phenotype relative to the wild-type mice and formed no detectable lung metastases. In the current study, we investigated how the absence of myo1e affects cell migration and invasion in vitro, using the highly invasive and migratory breast cancer cell line, 4T1. 4T1 cells deficient in myo1e exhibited an altered morphology and slower rates of migration in the wound-healing and transwell migration assays compared to the WT 4T1 cells. While integrin trafficking and Golgi reorientation did not appear to be altered upon myo1e loss, we observed lower rates of focal adhesion disassembly in myo1e-deficient cells, which could help explain the cell migration defect.

2.
Pediatr Nephrol ; 38(2): 439-449, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723736

RESUMO

BACKGROUND: Pathogenic mutations in the non-muscle single-headed myosin, myosin 1E (Myo1e), are a rare cause of pediatric focal segmental glomerulosclerosis (FSGS). These mutations are biallelic, to date only reported as homozygous variants in consanguineous families. Myo1e regulates the actin cytoskeleton dynamics and cell adhesion, which are especially important for podocyte functions. METHODS: DNA and RNA sequencing were used to identify novel MYO1E variants associated with FSGS. We studied the effects of these variants on the localization of Myo1e in kidney sections. We then analyzed the clinical and histological observations of all known pathogenic MYO1E variants. RESULTS: We identified a patient compound heterozygote for two novel variants in MYO1E and a patient homozygous for a deletion of exon 19. Computer modeling predicted these variants to be disruptive. In both patients, Myo1e was mislocalized. As a rule, pathogenic MYO1E variants map to the Myo1e motor and neck domain and are most often associated with steroid-resistant nephrotic syndrome in children 1-11 years of age, leading to kidney failure in 4-10 years in a subset of patients. The ultrastructural features are the podocyte damage and striking diffuse and global Alport-like glomerular basement membrane (GBM) abnormalities. CONCLUSIONS: We hypothesize that MYO1E mutations lead to disruption of the function of podocyte contractile actin cables resulting in abnormalities of the podocytes and the GBM and dysfunction of the glomerular filtration barrier. The characteristic clinicopathological data can help to tentatively differentiate this condition from other genetic podocytopathies and Alport syndrome until genetic testing is done. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Podócitos , Humanos , Membrana Basal Glomerular/patologia , Glomerulosclerose Segmentar e Focal/patologia , Mutação , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Nefrite Hereditária/genética , Fenótipo , Podócitos/patologia , Proteinúria/complicações
3.
J Am Soc Nephrol ; 33(11): 1989-2007, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36316095

RESUMO

BACKGROUND: Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in MYO1E are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the MYO1E variants identified by genomic sequencing have not been functionally characterized. Here, we set out to analyze two mutations in the Myo1e motor domain, T119I and D388H, which were selected on the basis of protein sequence conservation. METHODS: EGFP-tagged human Myo1e constructs were delivered into the Myo1e-KO mouse podocyte-derived cells via adenoviral infection to analyze Myo1e protein stability, Myo1e localization, and clathrin-dependent endocytosis, which is known to involve Myo1e activity. Furthermore, truncated Myo1e constructs were expressed using the baculovirus expression system and used to measure Myo1e ATPase and motor activity in vitro. RESULTS: Both mutants were expressed as full-length proteins in the Myo1e-KO cells. However, unlike wild-type (WT) Myo1e, the T119I variant was not enriched at the cell junctions or clathrin-coated vesicles (CCVs). In contrast, D388H variant localization was similar to that of WT. The rate of dissociation of the D388H variant from cell-cell junctions and CCVs was decreased, suggesting this mutation affects Myo1e interactions with binding partners. ATPase activity and ability to translocate actin filaments were drastically reduced for the D388H mutant, supporting findings from cell-based experiments. CONCLUSIONS: T119I and D388H mutations are deleterious to Myo1e functions. The experimental approaches used in this study can be applied to future characterization of novel MYO1E variants associated with SRNS.


Assuntos
Miosina Tipo I , Síndrome Nefrótica , Animais , Humanos , Camundongos , Mutação , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Síndrome Nefrótica/genética , Esteroides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...