Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; PP2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427543

RESUMO

Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity", and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity.

2.
J R Soc Interface ; 21(212): 20230601, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38531412

RESUMO

Insects are excellent at flying in dense vegetation and navigating through other complex spatial environments. This study investigates the strategies used by honeybees (Apis mellifera) to avoid collisions with an obstacle encountered frontally during flight. Bees were trained to fly through a tunnel that contained a solitary vertically oriented cylindrical obstacle placed along the midline. Flight trajectories of bees were recorded for six conditions in which the diameter of the obstructing cylinder was systematically varied from 25 mm to 160 mm. Analysis of salient events during the bees' flight, such as the deceleration before the obstacle, and the initiation of the deviation in flight path to avoid collisions, revealed a strategy for obstacle avoidance that is based on the relative retinal expansion velocity generated by the obstacle when the bee is on a collision course. We find that a quantitative model, featuring a controller that extracts specific visual cues from the frontal visual field, provides an accurate characterization of the geometry and the dynamics of the manoeuvres adopted by honeybees to avoid collisions. This study paves the way for the design of unmanned aerial systems, by identifying the visual cues that are used by honeybees for performing robust obstacle avoidance flight.


Assuntos
Voo Animal , Insetos , Abelhas , Animais , Cognição
3.
Bioinspir Biomim ; 19(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38227952

RESUMO

Miniature blimps are lighter-than-air vehicles which have become an increasingly common unmanned aerial system research platform due to their extended endurance and collision tolerant design. The UNSW-C bio-inspired miniature blimp consists of a 0.5 m spherical mylar envelope filled with helium. Four fins placed along the equator provide control over the three translatory axes and yaw rotations. A gondola attached to the bottom of the blimp contains all the electronics and flight controller. Here, we focus on using the UNSW-C blimp as a platform to achieve autonomous flight in GPS-denied environments. The majority of unmanned flying systems rely on GPS or multi-camera motion capture systems for position and orientation estimation. However, such systems are expensive, difficult to set up and not compact enough to be deployed in real environments. Instead, we seek to achieve basic flight autonomy for the blimp using a low-priced and portable solution. We make use of a low-cost embedded neural network stereoscopic camera (OAK-D-PoE) for detecting and positioning the blimp while an onboard inertia measurement unit was used for orientation estimation. Flight tests and analysis of trajectories revealed that 3D position hold as well as basic waypoint navigation could be achieved with variance (<0.1 m). This performance was comparable to that when a conventional multi-camera positioning system (VICON) was used for localizing the blimp. Our results highlight the potentially favorable tradeoffs offered by such low-cost positioning systems in extending the operational domain of unmanned flight systems when direct line of sight is available.


Assuntos
Nadadeiras de Animais , Eletrônica , Animais , Redes Neurais de Computação
4.
Sensors (Basel) ; 23(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37430816

RESUMO

Robot swarms are becoming popular in domains that require spatial coordination. Effective human control over swarm members is pivotal for ensuring swarm behaviours align with the dynamic needs of the system. Several techniques have been proposed for scalable human-swarm interaction. However, these techniques were mostly developed in simple simulation environments without guidance on how to scale them up to the real world. This paper addresses this research gap by proposing a metaverse for scalable control of robot swarms and an adaptive framework for different levels of autonomy. In the metaverse, the physical/real world of a swarm symbiotically blends with a virtual world formed from digital twins representing each swarm member and logical control agents. The proposed metaverse drastically decreases swarm control complexity due to human reliance on only a few virtual agents, with each agent dynamically actuating on a sub-swarm. The utility of the metaverse is demonstrated by a case study where humans controlled a swarm of uncrewed ground vehicles (UGVs) using gestural communication, and via a single virtual uncrewed aerial vehicle (UAV). The results show that humans could successfully control the swarm under two different levels of autonomy, while task performance increases as autonomy increases.

5.
IEEE Trans Cybern ; 53(8): 5108-5120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35666787

RESUMO

Quadrotors are one of the popular unmanned aerial vehicles (UAVs) due to their versatility and simple design. However, the tuning of gains for quadrotor flight controllers can be laborious, and accurately stable control of trajectories can be difficult to maintain under exogenous disturbances and uncertain system parameters. This article introduces a novel robust adaptive control synthesis methodology for a quadrotor robot's attitude and altitude stabilization. The proposed method is based on the fuzzy reinforcement learning and strictly negative imaginary (SNI) property. The first stage of our control approach is to transform a nonlinear quadrotor system into an equivalent negative-imaginary (NI) linear model by means of the feedback linearization (FL) technique. The second phase is to design a control scheme that adapts online the SNI controller gains via fuzzy Q -learning. The performance of the designed controller is compared with that of a fixed-gain SNI controller, a fuzzy-SNI controller, and a conventional PID controller in a series of numerical simulations. Furthermore, the proofs for the stability of the proposed controller and the adaptive laws are provided using the NI theorem.

6.
Science ; 368(6491): 586-587, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32381708
7.
Front Neurosci ; 14: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116498

RESUMO

Background: Although many electroencephalographic (EEG) indicators have been proposed in the literature, it is unclear which of the power bands and various indices are best as indicators of mental workload. Spectral powers (Theta, Alpha, and Beta) and ratios (Beta/(Alpha + Theta), Theta/Alpha, Theta/Beta) were identified in the literature as prominent indicators of cognitive workload. Objective: The aim of the present study is to identify a set of EEG indicators that can be used for the objective assessment of cognitive workload in a multitasking setting and as a foundational step toward a human-autonomy augmented cognition system. Methods: The participants' perceived workload was modulated during a teleoperation task involving an unmanned aerial vehicle (UAV) shepherding a swarm of unmanned ground vehicles (UGVs). Three sources of data were recorded from sixteen participants (n = 16): heart rate (HR), EEG, and subjective indicators of the perceived workload using the Air Traffic Workload Input Technique (ATWIT). Results: The HR data predicted the scores from ATWIT. Nineteen common EEG features offered a discriminatory power of the four workload setups with high classification accuracy (82.23%), exhibiting a higher sensitivity than ATWIT and HR. Conclusion: The identified set of features represents EEG indicators for the objective assessment of cognitive workload across subjects. These common indicators could be used for augmented intelligence in human-autonomy teaming scenarios, and form the basis for our work on designing a closed-loop augmented cognition system for human-swarm teaming.

8.
Sci Total Environ ; 691: 760-768, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326799

RESUMO

Widespread coastal urbanization has resulted in artificial light pollution encroaching into intertidal habitats, which are highly valued by society for ecosystem services including coastal protection, climate regulation and recreation. While the impacts of artificial light at night in terrestrial and riparian ecosystems are increasingly well documented, those on organisms that reside in coastal intertidal habitats are less well explored. The distribution of artificial light at night from seaside promenade lighting was mapped across a sandy shore, and its consequences for macroinvertebrate community structure quantified accounting for other collinear environmental variables known to shape biodiversity in intertidal ecosystems (shore height, wave exposure and organic matter content). Macroinvertebrate community composition significantly changed along artificial light gradients. Greater numbers of species and total community biomass were observed with increasing illumination, a relationship that was more pronounced (increased effects size) with increasing organic matter availability. Individual taxa exhibited different relationships with artificial light illuminance; the abundances of 27% of non-rare taxa [including amphipods (Amphipoda), catworms (Nephtys spp.), and sand mason worms (Lanice conchilega)] decreased with increasing illumination, while 20% [including tellins (Tellinidae spp.), lugworms (Arenicola marina) and ragworms (Nereididae spp.)] increased. Possible causes of these relationships are discussed, including direct effects of artificial light on macroinvertebrate behaviour and indirect effects via trophic interactions. With increasing light pollution in coastal zones around the world, larger scale changes in intertidal ecosystems could be occurring.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental , Luz , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...