Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Mol Biol ; 33(3): 228-245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348538

RESUMO

Aphid genomic resources enable the study of complex life history traits and provide information on vector biology, host adaption and speciation. The currant-lettuce aphid (Nasonovia ribisnigri (Hemiptera: Aphididae) (Mosley)) is a cosmopolitan pest of outdoor lettuce (Lactuca sativa (Asterales: Asteraceae) (Linnaeus)). Until recently, the use of resistant cultivars was an effective method for managing N. ribisnigri. A resistant cultivar containing a single gene (Nr-locus), introduced in the 1980s, conferred complete resistance to feeding. Overreliance of this Nr-locus in lettuce resulted in N. ribisnigri's ability to break resistance mechanism, with first reports during 2003. Our work attempts to understand which candidate gene(s) are associated with this resistance-breaking mechanism. We present two de novo draft assembles for N. ribisnigri genomes, corresponding to both avirulent (Nr-locus susceptible) and virulent (Nr-locus resistant) biotypes. Changes in gene expression of the two N. ribisnigri biotypes were investigated using transcriptomic analyses of RNA-sequencing (RNA-seq) data to understand the potential mechanisms of resistance to the Nr-locus in lettuce. The draft genome assemblies were 94.2% and 91.4% complete for the avirulent and virulent biotypes, respectively. Out of the 18,872 differentially expressed genes, a single gene/locus was identified in N. ribisnigri that was shared between two resistant-breaking biotypes. This locus was further explored and validated in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) experiments and has predicted localisations in both the cytoplasm and nucleus. This is the first study to provide evidence that a single gene/locus is likely responsible for the ability of N. ribisnigri to overcome the Nr-locus resistance in the lettuce host.


Assuntos
Afídeos , Lactuca , Lactuca/genética , Lactuca/parasitologia , Afídeos/genética , Animais , Perfilação da Expressão Gênica , Genoma de Inseto , Transcriptoma
2.
Vaccines (Basel) ; 6(3)2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004410

RESUMO

Vaccination is one of the most effective tools for limiting the impact of equine influenza (EI). The humoral immunity established following a primary vaccination course can decrease significantly between the second (V2) and third immunisations (V3), leaving some horses insufficiently protected for several weeks. This so-called "immunity gap" poses a challenge to all EI vaccines. During this period, the EI infection of vaccinated animals may be followed by marked clinical signs and virus shedding. However, several EI vaccines have been shown to stimulate equine influenza virus (EIV)-specific cell-mediated immunity, which is likely to play a role in protection against EIV infection and/or mitigate the clinical and virological signs of EI. Reducing the interval between V2 and V3 has been shown to be counterproductive to longer-term immunity. Further research is needed to define and address the "immunity gap" in horses. This study aimed to measure the level of protection induced by a whole inactivated, ISCOMatrix adjuvanted, EI and tetanus vaccine (Equilis Prequenza-Te) when challenged during the immunity gap (i.e., immediately before the recommended boost immunisation, more than 5 months after V2) using infection with a recent heterologous Florida Clade 2 (FC2) equine influenza virus (EIV) strain. This vaccine was tested in a Welsh mountain pony model. A group of seven ponies was vaccinated twice, 4 weeks apart. The protective antibody response was measured and ponies were challenged, along with 5 unvaccinated control ponies, by experimental infection with the FC2 A/eq/Northamptonshire/1/13 EIV strain, 158 days (around 5.2 months) after V2 and their clinical signs and virus shedding were monitored. EI serology was measured by single radial haemolysis (SRH) and haemagglutination inhibition (HI). Clinical signs and virus shedding (measured by qRT-PCR and hen's egg titration) were compared with controls. All vaccinates had detectable, low SRH antibody titres and most had detectable, low HI titres. Significant clinical and virological protection was observed in vaccinates (p < 0.05), supporting the good performance of this vaccine against a recent EIV strain. In this study, the impact of the immunity gap in ponies was limited after primary vaccination with this whole inactivated, ISCOMatrix adjuvanted EI and tetanus vaccine (Equilis Prequenza-Te) when infected several months after V2 with a recent FC2 strain, which is representative of EIV circulating in the EU.

3.
Vet Microbiol ; 211: 150-159, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29102112

RESUMO

Equine Influenza (EI) is an important respiratory disease of horses caused by H3N8 equine influenza viruses (EIV). Vaccination is a key strategy to prevent or control this disease. However, EIV undergoes continuous antigenic drift and whilst numerous EI vaccines are commercially available worldwide, an accurate evaluation of their efficacy is frequently required through clinical trials conducted in the natural host. Room nebulisation is one of the chosen methods to challenge horses during EI vaccine studies. A potential decreased pathogenicity observed with recent Florida Clade 2 (FC2) EIV isolates have increased the heterogeneity of the clinical response and virus shedding measured after infection by room nebulisation, which reduced the statistical power of studies. Our objectives were to compare clinical and virological parameters following experimental infection with several different EIV strains and to confirm that individual nebulisation is a model refinement that prevents an increase of the number of animals per group. This study is a retrospective comparison and meta-analysis of clinical and virological results collected from 9 independent EIV infection studies in the natural host. Naïve Welsh mountain ponies were experimentally infected by room or individual nebulisation with FC2 EIV strains, including A/equine/Richmond/1/07 (R/07), A/equine/East Renfrewshire/11 (ER/11), A/equine/Cambremer/1/2012 (C/12) and A/equine/Northamptonshire/1/13 (N/1/13). The retrospective meta-analysis confirmed a decreased pathogenicity of the EIV ER/11 and C/12 strains when compared with R/07. Experimental infection by individual nebulisation improved the clinical and virological parameters induced by recent FC2 strains, when compared with conventional room nebulisation. In conclusion, individual nebulisation offers a better control of the challenge dose administered and a greater homogeneity of the response measured in control animals. This in turn, helps maintain the number of animals per group to the minimum necessary required to obtain meaningful results in vaccine efficacy studies, which adheres to the 3Rs (Replacement, Reduction and Refinement) principles.


Assuntos
Doenças dos Cavalos/prevenção & controle , Vírus da Influenza A Subtipo H3N8/imunologia , Infecções por Orthomyxoviridae/veterinária , Vacinação/veterinária , Animais , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A Subtipo H3N8/patogenicidade , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Eliminação de Partículas Virais
4.
Pathogens ; 5(4)2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27897990

RESUMO

Vaccination is highly effective to prevent, control, and limit the impact of equine influenza (EI), a major respiratory disease of horses. However, EI vaccines should contain relevant equine influenza virus (EIV) strains for optimal protection. The OIE expert surveillance panel annually reviews EIV evolution and, since 2010, the use of Florida clade 1 and 2 sub-lineages representative vaccine strains is recommended. This report summarises the development process of a fully- updated recombinant canarypox-based EI vaccine in order to meet the last OIE recommendations, including the vaccine mode of action, production steps and schedule. The EI vaccine ProteqFlu contains 2 recombinant canarypox viruses expressing the haemagglutinin of the A/equine/Ohio/03 and A/equine/Richmond/1/07 isolates (Florida clade 1 and 2 sub-lineages, respectively). The updated EI vaccine was tested for efficacy against the representative Florida clade 2 EIV strain A/equine/Richmond/1/07 in the Welsh mountain pony model. Protective antibody response, clinical signs of disease and virus shedding were compared with unvaccinated control ponies. Significant protection was measured in vaccinated ponies, which supports the vaccine registration. The recombinant canarypox-based EI vaccine was the first fully updated EI vaccine available in the EU, which will help to minimise the increasing risk of vaccine breakdown due to constant EIV evolution through antigenic drift.

5.
Vaccine ; 34(33): 3787-95, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27269055

RESUMO

CONTEXT: Numerous equine influenza (EI) epizooties are reported worldwide. EI vaccination is the most efficient methods of prevention. However, not all horses develop protective immunity after immunisation, increasing the risk of infection and transmission. OBJECTIVES: This field study aimed to understand the poor response to primary EI vaccination. STUDY DESIGN: The EI antibody response was measured in 174 Thoroughbred foals set in 3 stud farms (SF#1 to SF#3) over a 2years period. All foals were immunised with a commercial recombinant canarypox-based EI vaccine. Sera were tested by single radial haemolysis against the A/equine/Jouars/4/06 EIV strain (H3N8) at the time of the first vaccination (V1), 2weeks and 3months after the second immunisation (V2), 2days and 3months after the third immunisation (V3). RESULTS: The frequency of poor-responders (no detectable antibody titres) was surprisingly elevated after V2 (56.8%), increased to 81.7% at V2+3months and reached 98.6% at V3. The frequency of poor-responder was still 19.2%, 3months after V3. Two independent influential factors were identified. The short (V2+2weeks) and mid-term (V2+3months, V3+3months) antibody levels were positively correlated to the age at V1 (p-value=0.003, 0.031 and 0.0038, respectively). Presence of maternally-derived antibodies (MDA) at V1 was negatively correlated with antibody levels after V3 only (p-value=0.0056). Given that SF#1 antibody response was below clinical protective levels at all-time points studied, the annual boost immunisation (V4) was brought forward by 7.0±1.1months. V1 was delayed by 7weeks the following year, which significantly increased short- and mid-term antibody titres (p-value=9.9e-07 and 2.31e-07, respectively). CONCLUSION: The age and MDA at first immunisation with the canarypox-based IE vaccine play an independent role in the establishment of antibody levels. This study also highlights the benefit provided by serological surveillance to evaluate herd immunity and to implement corrective management/vaccination measures.


Assuntos
Doenças dos Cavalos/prevenção & controle , Cavalos/imunologia , Imunidade Humoral , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/veterinária , Fatores Etários , Animais , Anticorpos Antivirais/sangue , Formação de Anticorpos , Vírus da Varíola dos Canários , Doenças dos Cavalos/virologia , Imunidade Materno-Adquirida , Vírus da Influenza A Subtipo H3N8 , Infecções por Orthomyxoviridae/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...