Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Intensive Care Soc ; 25(2): 210-222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38737307

RESUMO

Background: Early mobilisation of critically ill patients remains variable across practice. This study set out to determine barriers to and facilitators of early mobilisation for patients diagnosed with delirium in the intensive care unit (ICU). Methods: A mixed-methods descriptive systematic review. Electronic databases (AMED, BNI, CINAHL Plus, Cochrane Library, Medline and EMBASE) were searched for publications up to 22nd December 2021. Independent reviewers screened studies and extracted data using Covidence Systematic Review Management software. Data were summarised according to frequency (n/%) of barriers and facilitators. Thematic analysis of qualitative studies was carried out in order to address the secondary aim. Quantitative studies were assessed using the GRADE quality assessment tool. Qualitative studies were analysed according to the GRADE-CERQual quality assessment tool. This study was prospectively registered on PROSPERO (CRD 42021227655). Results: Ten studies met the inclusion criteria. Quantitative findings demonstrated the presence of delirium was the most common reported barrier to early mobilisation. The most common facilitator was ICU staff experience of positive outcomes as a result of early mobilisation interventions. Thematic analysis identified six main themes that may describe potential meanings behind these findings: (1) knowledge, (2) personal preferences, (3) perceived burden of delirium, (4) perceived complexity, (5) decision-making and (6) culture. Conclusion: These findings highlight the reported need to further understand the impact and value of early mobilisation as a non-pharmacological intervention for patients diagnosed with delirium in ICU. Evaluation of early mobilisation interventions involving key stakeholders may address these concerns and provide effective implementation strategies.

2.
J Intensive Care Soc ; 25(2): 223-230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38737312

RESUMO

Background: In the United Kingdom, around 184,000 adults are admitted to an intensive care unit (ICU) each year with over 30% receiving mechanical ventilation. Oxygen is the commonest therapeutic intervention provided to these patients but it is unclear how much oxygen should be administered for the best clinical outcomes. Methods: The UK-ROX trial will evaluate the clinical and cost-effectiveness of conservative oxygen therapy (the minimum oxygen concentration required to maintain an oxygen saturation of 90% ± 2%) versus usual oxygen therapy in critically ill adults receiving supplemental oxygen when invasively mechanically ventilated in ICUs in England, Wales and Northern Ireland. The trial will recruit 16,500 patients from approximately 100 UK adult ICUs. Using a deferred consent model, enrolled participants will be randomly allocated (1:1) to conservative or usual oxygen therapy until ICU discharge or 90 days after randomisation. Objectives: The primary clinical outcome is all cause mortality at 90 days following randomisation. Discussion: The UK-ROX trial has received ethical approval from the South Central - Oxford C Research Ethics Committee (Reference: 20/SC/0423) and the Confidentiality Advisory Group (Reference: 22/CAG/0154). The trial commenced in May 2021 and, at the time of publication, 95 sites had opened to recruitment.

3.
Nucleic Acids Res ; 50(8): 4315-4328, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34606604

RESUMO

Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.


Assuntos
Archaea , Sistemas CRISPR-Cas , Archaea/genética , Bactérias/genética , Plasmídeos/genética , Células Procarióticas
4.
Nat Rev Microbiol ; 18(2): 67-83, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857715

RESUMO

The number and diversity of known CRISPR-Cas systems have substantially increased in recent years. Here, we provide an updated evolutionary classification of CRISPR-Cas systems and cas genes, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015. The new classification includes 2 classes, 6 types and 33 subtypes, compared with 5 types and 16 subtypes in 2015. A key development is the ongoing discovery of multiple, novel class 2 CRISPR-Cas systems, which now include 3 types and 17 subtypes. A second major novelty is the discovery of numerous derived CRISPR-Cas variants, often associated with mobile genetic elements that lack the nucleases required for interference. Some of these variants are involved in RNA-guided transposition, whereas others are predicted to perform functions distinct from adaptive immunity that remain to be characterized experimentally. The third highlight is the discovery of numerous families of ancillary CRISPR-linked genes, often implicated in signal transduction. Together, these findings substantially clarify the functional diversity and evolutionary history of CRISPR-Cas.


Assuntos
Archaea/genética , Bactérias/genética , Sistemas CRISPR-Cas/genética , Evolução Molecular , Regulação da Expressão Gênica em Archaea/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistemas CRISPR-Cas/fisiologia
5.
Nucleic Acids Res ; 48(4): 2000-2012, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31879772

RESUMO

CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Evolução Molecular , Plasmídeos/genética , Archaea/genética , Bactérias/genética
6.
J Intensive Care Soc ; 20(3): 258-262, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31447921

RESUMO

Delirium, and its importance, is briefly discussed to contextualise the intricate story of one patient's experience of the condition. This recounting of the main episodes of delirium shows how its nature and severity changed with time and location, from ICU to the surgical ward. Reflection on these experiences provides insights and conclusions for consideration by the medical profession. Discussion of the nature of delirium, and the sort of interventions that helped, or might be provided, for recovery from, or reduction of, the condition are considered. Thought is given to what might be done to aid recovery and reduce severity. Some suggestions are made as to what education might be provided and the research required to better detect the condition and understand its nature and prevention.

7.
FEMS Microbiol Lett ; 366(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30993331

RESUMO

Screening of genomic and metagenomic databases for new variants of CRISPR-Cas systems increasingly results in the discovery of derived variants that do not seem to possess the interference capacity and are implicated in functions distinct from adaptive immunity. We describe an extremely derived putative class 1 CRISPR-Cas system that is present in many Halobacteria and consists of distant homologs of the Cas5 and Cas7 protein along with an uncharacterized conserved protein and various nucleases. We hypothesize that, although this system lacks typical CRISPR effectors or a CRISPR array, it functions as a RNA-dependent defense mechanism that, unlike other derived CRISPR-Cas, utilizes alternative nucleases to cleave invader genomes.


Assuntos
Proteínas Arqueais/genética , Genoma Arqueal , Halobacteriaceae/genética , Proteínas Arqueais/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Halobacteriaceae/classificação , Halobacteriaceae/metabolismo , Filogenia
8.
RNA Biol ; 16(4): 530-542, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29911924

RESUMO

A study was undertaken to identify conserved proteins that are encoded adjacent to cas gene cassettes of Type III CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats - CRISPR associated) interference modules. Type III modules have been shown to target and degrade dsDNA, ssDNA and ssRNA and are frequently intertwined with cofunctional accessory genes, including genes encoding CRISPR-associated Rossman Fold (CARF) domains. Using a comparative genomics approach, and defining a Type III association score accounting for coevolution and specificity of flanking genes, we identified and classified 39 new Type III associated gene families. Most archaeal and bacterial Type III modules were seen to be flanked by several accessory genes, around half of which did not encode CARF domains and remain of unknown function. Northern blotting and interference assays in Synechocystis confirmed that one particular non-CARF accessory protein family was involved in crRNA maturation. Non-CARF accessory genes were generally diverse, encoding nuclease, helicase, protease, ATPase, transporter and transmembrane domains with some encoding no known domains. We infer that additional families of non-CARF accessory proteins remain to be found. The method employed is scalable for potential application to metagenomic data once automated pipelines for annotation of CRISPR-Cas systems have been developed. All accessory genes found in this study are presented online in a readily accessible and searchable format for researchers to audit their model organism of choice: http://accessory.crispr.dk .


Assuntos
Archaea/genética , Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Família Multigênica , Proteínas Associadas a CRISPR/química , Mapeamento Cromossômico , Deleção de Genes , Filogenia , Domínios Proteicos , Synechocystis/genética
9.
RNA Biol ; 16(4): 557-565, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146914

RESUMO

Carrier state viral infection constitutes an equilibrium state in which a limited fraction of a cellular population is infected while the remaining cells are transiently resistant to infection. This type of infection has been characterized for several bacteriophages but not, to date, for archaeal viruses. Here we demonstrate that the rudivirus SIRV3 can produce a host-dependent carrier state infection in the model crenarchaeon Sulfolobus. SIRV3 only infected a fraction of a Sulfolobus islandicus REY15A culture over several days during which host growth was unimpaired and no chromosomal DNA degradation was observed. CRISPR spacer acquisition from SIRV3 DNA was induced by coinfecting with the monocaudavirus SMV1 and it was coincident with increased transcript levels from subtype I-A adaptation and interference cas genes. However, this response did not significantly affect the carrier state infection of SIRV3 and both viruses were maintained in the culture over 12 days during which SIRV3 anti-CRISPR genes were shown to be expressed. Transcriptome and proteome analyses demonstrated that most SIRV3 genes were expressed at varying levels over time whereas SMV1 gene expression was generally low. The study yields insights into the basis for the stable infection of SIRV3 and the resistance to the different host CRISPR-Cas interference mechanisms. It also provides a rationale for the commonly observed coinfection of archaeal cells by different viruses in natural environments.


Assuntos
Sistemas CRISPR-Cas/genética , Imunidade , Rudiviridae/genética , Sulfolobus/genética , Sulfolobus/imunologia , Coinfecção/virologia , DNA Viral/genética , Genoma Viral , Heterozigoto , Interações Hospedeiro-Patógeno/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfolobus/crescimento & desenvolvimento , Proteínas Virais/metabolismo
10.
Nat Commun ; 7: 13595, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882920

RESUMO

Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus two-tailed virus (ATV) forms a high-affinity complex with RNAP by binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one position. This counteracts the formation of transcription pre-initiation complexes in vitro and represses abortive and productive transcription initiation, as well as elongation. Both host and viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP).


Assuntos
Acidianus/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais/metabolismo , Regiões Promotoras Genéticas , Sulfolobus , Iniciação da Transcrição Genética , Transcrição Gênica
11.
12.
Bioinformatics ; 32(17): i576-i585, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587677

RESUMO

MOTIVATION: The CRISPR-Cas system is an adaptive immune system in many archaea and bacteria, which provides resistance against invading genetic elements. The first phase of CRISPR-Cas immunity is called adaptation, in which small DNA fragments are excised from genetic elements and are inserted into a CRISPR array generally adjacent to its so called leader sequence at one end of the array. It has been shown that transcription initiation and adaptation signals of the CRISPR array are located within the leader. However, apart from promoters, there is very little knowledge of sequence or structural motifs or their possible functions. Leader properties have mainly been characterized through transcriptional initiation data from single organisms but large-scale characterization of leaders has remained challenging due to their low level of sequence conservation. RESULTS: We developed a method to successfully detect leader sequences by focusing on the consensus repeat of the adjacent CRISPR array and weak upstream conservation signals. We applied our tool to the analysis of a comprehensive genomic database and identified several characteristic properties of leader sequences specific to archaea and bacteria, ranging from distinctive sizes to preferential indel localization. CRISPRleader provides a full annotation of the CRISPR array, its strand orientation as well as conserved core leader boundaries that can be uploaded to any genome browser. In addition, it outputs reader-friendly HTML pages for conserved leader clusters from our database. AVAILABILITY AND IMPLEMENTATION: CRISPRleader and multiple sequence alignments for all 195 leader clusters are available at http://www.bioinf.uni-freiburg.de/Software/CRISPRleader/ CONTACT: costa@informatik.uni-freiburg.de or backofen@informatik.uni-freiburg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Archaea , Sequência de Bases , Sequência Conservada , Loci Gênicos , Anotação de Sequência Molecular , Alinhamento de Sequência
13.
RNA Biol ; 13(11): 1166-1173, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27618562

RESUMO

The stringency of crRNA-protospacer DNA base pair matching required for effective CRISPR-Cas interference is relatively low in crenarchaeal Sulfolobus species in contrast to that required in some bacteria. To understand its biological significance we studied crRNA-protospacer interactions in Sulfolobus islandicus REY15A which carries multiple, and functionally diverse, interference complexes. A range of mismatches were introduced into a vector-borne protospacer that was identical to spacer 1 of CRISPR locus 2, with a cognate CCN PAM sequence. Two important crRNA annealing regions were identified on the 39 bp protospacer, a strong primary site centered on nucleotides 3 - 7 and a weaker secondary site at nucleotides 21 - 25. Multiple mismatches introduced into remaining protospacer regions did not seriously impair interference. Extending the study to different protospacers demonstrated that the efficacy of the secondary site was greatest for protospacers with higher G+C contents. In addition, the interference effects were assigned specifically to the type I-A dsDNA-targeting module by repeating the experiments with mutated protospacer constructs that were transformed into an S. islandicus mutant lacking type III-Bα and III-Bß interference gene cassettes, which showed similar interference levels to those of the wild-type strain. Parallels are drawn to the involvement of 2 annealing sites for microRNAs on some eukaryal mRNAs which provide enhanced binding capacity and specificity. A biological rationale for the relatively low crRNA-protospacer base pairing stringency among the Sulfolobales is considered.


Assuntos
DNA Intergênico/metabolismo , RNA Arqueal/metabolismo , Sulfolobus/genética , Composição de Bases , Sistemas CRISPR-Cas , DNA Intergênico/química
14.
Nucleic Acids Res ; 44(9): 4233-42, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27098036

RESUMO

The Sulfolobales host a unique family of crenarchaeal conjugative plasmids some of which undergo complex rearrangements intracellularly. Here we examined the conjugation cycle of pKEF9 in the recipient strain Sulfolobus islandicus REY15A. The plasmid conjugated and replicated rapidly generating high average copy numbers which led to strong growth retardation that was coincident with activation of CRISPR-Cas adaptation. Simultaneously, intracellular DNA was extensively degraded and this also occurred in a conjugated Δcas6 mutant lacking a CRISPR-Cas immune response. Furthermore, the integrated forms of pKEF9 in the donor Sulfolobus solfataricus P1 and recipient host were specifically corrupted by transposable orfB elements, indicative of a dual mechanism for inactivating free and integrated forms of the plasmid. In addition, the CRISPR locus of pKEF9 was progressively deleted when conjugated into the recipient strain. Factors influencing activation of CRISPR-Cas adaptation in the recipient strain are considered, including the first evidence for a possible priming effect in Sulfolobus The 3-Mbp genome sequence of the donor P1 strain is presented.


Assuntos
DNA Arqueal/genética , Sulfolobus solfataricus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Evolução Molecular , Plasmídeos/genética , Sulfolobus solfataricus/citologia , Sulfolobus solfataricus/crescimento & desenvolvimento
15.
Mol Microbiol ; 99(4): 719-28, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26514343

RESUMO

A transcriptome study was performed on Sulfolobus islandicus REY15A actively undergoing CRISPR spacer acquisition from the crenarchaeal monocaudavirus STSV2 in rich and basal media over a 6 day period. Spacer acquisition preceded strong host growth retardation, altered transcriptional activity of four different CRISPR-Cas modules and changes in viral copy numbers, and with significant differences in the two media. Transcript levels of proteins involved in the cell cycle were reduced, whereas those of DNA replication, DNA repair, transcriptional regulation and some antitoxin-toxin pairs and transposases were unchanged or enhanced. Antisense RNAs were implicated in the transcriptional regulation of adaptation and interference modules of the type I-A CRISPR-Cas system, and evidence was found for the occurrence of functional co-ordination between the single CRISPR-Cas adaptation module and the functionally diverse interference modules.


Assuntos
Vírus de Archaea/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sulfolobus/genética , Sulfolobus/virologia , Transcriptoma , Replicação do DNA/genética , DNA Viral/genética , Regulação da Expressão Gênica em Archaea , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Sulfolobus/crescimento & desenvolvimento , Ativação Transcricional , Replicação Viral/genética
16.
Nat Rev Microbiol ; 13(11): 722-36, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26411297

RESUMO

The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.


Assuntos
Archaea/genética , Bactérias/genética , Sistemas CRISPR-Cas/genética , Evolução Molecular , Genoma Arqueal , Genoma Bacteriano , Filogenia
17.
Methods Mol Biol ; 1311: 223-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981476

RESUMO

Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2 with an environmental virus mixture isolated from Yellowstone National Park (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012). Experimental studies of isolated genetic elements from this mixture revealed that SMV1 (S ulfolobus Monocauda Virus 1), a tailed spindle-shaped virus, can induce spacer acquisition in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs and the techniques used both to infect laboratory strains with these virus mixtures and to obtain purified virus particles. Secondly, we present the experimental conditions required for activating SMV1-induced spacer acquisition in two different Sulfolobus species.


Assuntos
Vírus de Archaea/isolamento & purificação , Vírus de Archaea/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Intergênico/genética , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/virologia , Vírus de Archaea/ultraestrutura , Técnicas de Cultura , Microscopia Eletrônica , Sulfolobus solfataricus/imunologia
18.
Gene ; 564(1): 81-6, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25813874

RESUMO

Transposable elements (TEs) are DNA pieces that are present in almost all the living world at variable genomic density. Due to their mobility and density, TEs are involved in a large array of genomic modifications. In eukaryotes, TE expression has been studied in detail in several species. In prokaryotes, studies of IS expression are generally linked to particular copies that induce a modification of neighboring gene expression. Here we investigated global patterns of IS transcription in the Alphaproteobacterial endosymbiont Wolbachia wVulC, using both RT-PCR and bioinformatic analyses. We detected several transcriptional promoters in all IS groups. Nevertheless, only one of the potentially functional IS groups possesses a promoter located upstream of the transposase gene, that could lead up to the production of a functional protein. We found that the majority of IS groups are expressed whatever their functional status. RT-PCR analyses indicate that the transcription of two IS groups lacking internal promoters upstream of the transposase start codon may be driven by the genomic environment. We confirmed this observation with the transcription analysis of individual copies of one IS group. These results suggest that the genomic environment is important for IS expression and it could explain, at least partly, copy number variability of the various IS groups present in the wVulC genome and, more generally, in bacterial genomes.


Assuntos
Genoma Bacteriano , Wolbachia/genética , Animais , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Isópodes/microbiologia , Regiões Promotoras Genéticas , Simbiose , Transcrição Gênica
19.
Life (Basel) ; 5(1): 783-817, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25764276

RESUMO

The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.

20.
Bioinformatics ; 30(17): i489-96, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25161238

RESUMO

MOTIVATION: The discovery of CRISPR-Cas systems almost 20 years ago rapidly changed our perception of the bacterial and archaeal immune systems. CRISPR loci consist of several repetitive DNA sequences called repeats, inter-spaced by stretches of variable length sequences called spacers. This CRISPR array is transcribed and processed into multiple mature RNA species (crRNAs). A single crRNA is integrated into an interference complex, together with CRISPR-associated (Cas) proteins, to bind and degrade invading nucleic acids. Although existing bioinformatics tools can recognize CRISPR loci by their characteristic repeat-spacer architecture, they generally output CRISPR arrays of ambiguous orientation and thus do not determine the strand from which crRNAs are processed. Knowledge of the correct orientation is crucial for many tasks, including the classification of CRISPR conservation, the detection of leader regions, the identification of target sites (protospacers) on invading genetic elements and the characterization of protospacer-adjacent motifs. RESULTS: We present a fast and accurate tool to determine the crRNA-encoding strand at CRISPR loci by predicting the correct orientation of repeats based on an advanced machine learning approach. Both the repeat sequence and mutation information were encoded and processed by an efficient graph kernel to learn higher-order correlations. The model was trained and tested on curated data comprising >4500 CRISPRs and yielded a remarkable performance of 0.95 AUC ROC (area under the curve of the receiver operator characteristic). In addition, we show that accurate orientation information greatly improved detection of conserved repeat sequence families and structure motifs. We integrated CRISPRstrand predictions into our CRISPRmap web server of CRISPR conservation and updated the latter to version 2.0. AVAILABILITY: CRISPRmap and CRISPRstrand are available at http://rna.informatik.uni-freiburg.de/CRISPRmap. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA/metabolismo , Archaea/genética , Sequência de Bases , Sistemas CRISPR-Cas , Sequência Conservada , Loci Gênicos , Anotação de Sequência Molecular , RNA/biossíntese , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...