Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260544

RESUMO

With the COVID-19 pandemic caused by SARS-CoV-2 now in its second year, there remains an urgent need for diagnostic testing that can identify infected individuals, particularly those who harbor infectious virus. Various RT-PCR strategies have been proposed to identify specific viral RNA species that may predict the presence of infectious virus, including detection of transcriptional intermediates (e.g. subgenomic RNA [sgRNA]) and replicative intermediates (e.g. negative-strand RNA species). Using a novel primer/probe set for detection of subgenomic (sg)E transcripts, we successfully identified 100% of specimens containing culturable SARS-CoV-2 from a set of 126 clinical samples (total sgE CT values ranging from 12.3-37.5). This assay showed superior performance compared to a previously published sgRNA assay and to a negative-strand RNA assay, both of which failed to detect target RNA in a subset of samples from which we isolated live virus. In addition, total levels of viral RNA (genome, negative-strand, and sgE) detected with the WHO/Charite primer-probe set correlated closely with levels of infectious virus. Specifically, infectious virus was not detected in samples with a CT above 31.0. Clinical samples with higher levels of viral RNA also displayed cytopathic effect (CPE) more quickly than those with lower levels of viral RNA. Finally, we found that the infectivity of SARS-CoV-2 samples is significantly dependent on the cell type used for viral isolation, as Vero E6 cells expressing TMRPSS2 extended the analytical sensitivity of isolation by more than 3 CT compared to parental Vero E6 cells and resulted in faster isolation. Our work shows that using a total viral RNA Ct cut-off of >31 or specifically testing for sgRNA can serve as an effective rule-out test for viral infectivity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256527

RESUMO

More than one year into a global pandemic, SARS-CoV-2 is now defined by a variety of rapidly evolving variant lineages. Several FDA authorized molecular diagnostic tests have been impacted by viral variation, while no reports of viral variation affecting antigen test performance have occurred to date. While determining the analytical sensitivity of the Quidel Sofia SARS Antigen FIA test (Sofia 2), we uncovered a high viral load specimen that repeatedly tested negative by this antigen test. Whole genome sequencing of the specimen uncovered two mutations, T205I and D399N, present in the nucleocapsid protein of the isolate. All six SARS-CoV-2 positive clinical specimens available in our laboratory with a D399N nucleocapsid mutation and CT < 31 were not detected by the Sofia 2 but detected by the Abbott BinaxNOW COVID-19 Ag Card, while clinical specimens with the T205I mutation were detected by both assays. Testing of recombinant SARS-CoV-2 nucleocapsid with these variants demonstrated an approximate 1000-fold loss in sensitivity for the Quidel Sofia SARS Antigen FIA test associated with the D399N mutation, while the BinaxNOW and Quidel Quickvue SARS Antigen tests were unaffected by the mutation. The D399N nucleocapsid mutation has been relatively uncommon to date, appearing in only 0.02% of genomes worldwide at time of writing. Our results demonstrate how routine pathogen genomics can be integrated into the clinical microbiology laboratory to investigate diagnostic edge cases, as well as the importance of profiling antigenic diversity outside of the spike protein for SARS-CoV-2 diagnostics.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253321

RESUMO

Real-time epidemiological tracking of variants of interest can help limit the spread of more contagious forms of SARS-CoV-2, such as those containing the N501Y mutation. Typically, genetic sequencing is required to be able to track variants of interest in real-time. However, sequencing can take time and may not be accessible in all laboratories. Genotyping by RT-ddPCR offers an alternative to sequencing to rapidly detect variants of concern through discrimination of specific mutations such as N501Y that is associated with increased transmissibility. Here we describe the first cases of the B.1.1.7 lineage of SARS-CoV-2 detected in Washington State by using a combination of RT-PCR, RT-ddPCR, and next-generation sequencing. We screened 1,035 samples positive for SARS-CoV-2 by our CDC-based laboratory developed assay using ThermoFishers multiplex RT-PCR COVID-19 assay over four weeks from late December 2020 to early January 2021. S gene dropout candidates were subsequently assayed by RT-ddPCR to confirm four mutations within the S gene associated with the B.1.1.7 lineage: a deletion at amino acid (AA) 69-70 (ACATGT), deletion at AA 145, (TTA), N501Y mutation (TAT), and S982A mutation (GCA). All four targets were detected in two specimens, and follow-up sequencing revealed a total of 10 mutations in the S gene and phylogenetic clustering within the B.1.1.7 lineage. As variants of concern become increasingly prevalent, molecular diagnostic tools like RT-ddPCR can be utilized to quickly, accurately, and sensitively distinguish more contagious lineages of SARS-CoV-2.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20035618

RESUMO

More than 100,000 people worldwide are known to have been infected with SARS-CoV-2 beginning in December 2019. The virus has now spread to over 93 countries including the United States, with the largest cluster of US cases to date in the Seattle metropolitan area in Washington. Given the rapid increase in the number of local cases, the availability of accurate, high-throughput SARS-CoV-2 testing is vital to efforts to manage the current public health crisis. In the course of optimizing SARS-CoV-2 testing performed by the University of Washington Clinical Virology Lab (UW Virology Lab), we tested assays using seven different primer/probe sets and one assay kit. We found that the most sensitive assays were those the used the E-gene primer/probe set described by Corman et al. (Eurosurveillance 25(3), 2020, https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045) and the N2 set described by the CDC (Division of Viral Diseases, Centers for Disease Control and Prevention, 2020, https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf). All assays tested were found to be highly specific for SARS-CoV-2, with no cross-reactivity with other respiratory viruses observed in our analyses regardless of the primer/probe set or kit used. These results will provide invaluable information to other clinical laboratories who are actively developing SARS-CoV-2 testing protocols at a time when increased testing capacity is urgently needed worldwide.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-001008

RESUMO

The ongoing COVID-19 pandemic has caused an unprecedented need for rapid diagnostic testing. The Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) recommend a standard assay that includes an RNA extraction step from a nasopharyngeal (NP) swab followed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to detect the purified SARS-CoV-2 RNA. The current global shortage of RNA extraction kits has caused a severe bottleneck to COVID-19 testing. We hypothesized that SARS-CoV-2 RNA could be detected from NP samples via a direct RT-qPCR assay that omits the RNA extraction step altogether, and tested this hypothesis on a series of blinded clinical samples. The direct RT-qPCR approach correctly identified 92% of NP samples (n = 155) demonstrated to be positive for SARS-CoV-2 RNA by traditional clinical diagnostic RT-qPCR that included an RNA extraction. Thus, direct RT-qPCR could be a front-line approach to identify the substantial majority of COVID-19 patients, reserving a repeat test with RNA extraction for those individuals with high suspicion of infection but an initial negative result. This strategy would drastically ease supply chokepoints of COVID-19 testing and should be applicable throughout the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...