Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214546

RESUMO

Automatic systems are increasingly being applied in the automotive industry to improve driving safety and passenger comfort, reduce traffic and increase energy efficiency. The objective of this work is focused on improving the automatic brake assistance systems of motor vehicles trying to imitate human behaviour but correcting possible human errors such as distractions, lack of visibility or time reaction. The proposed system can optimise the intensity of the braking according to the available distance to carry out the manoeuvre and the vehicle speed to be as less aggressive as possible, thus giving priority to the comfort of the driver. A series of tests are carried out in this work with a vehicle instrumented with sensors that provide real-time information about the braking system. The data obtained experimentally during the dynamic tests are used to design an estimator using the Artificial Neural Network (ANN) technique. This information makes it possible to characterise all braking situations based on the pressure of the brake circuit, the type of manoeuvre and the test speed. Thanks to this ANN, it is possible to estimate the requirements of the braking system in real driving situations and carry out the manoeuvres automatically. Experiments and simulations verified the proposed method for the estimation of braking pressure in real deceleration scenarios.


Assuntos
Condução de Veículo , Desaceleração , Acidentes de Trânsito/prevenção & controle , Humanos , Veículos Automotores , Redes Neurais de Computação
2.
Sensors (Basel) ; 21(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670670

RESUMO

Nowadays, autonomous vehicles are increasing, and the driving scenario that includes both autonomous and human-driven vehicles is a fact. Knowing the driving styles of drivers in the process of automating vehicles is interest in order to make driving as natural as possible. To this end, this article presents a first approach to the design of a controller for the braking system capable of imitating the different manoeuvres that any driver performs while driving. With this aim, different experimental tests have been carried out with a vehicle instrumented with sensors capable of providing real-time information related to the braking system. The experimental tests consist of reproducing a series of braking manoeuvres at different speeds on a flat floor track following a straight path. The tests distinguish between three types of braking manoeuvre: maintained, progressive and emergency braking, which cover all the driving circumstances in which the braking system may intervene. This article presents an innovative approach to characterise braking types thanks to the methodology of analysing the data obtained by sensors during experimental tests. The characterisation of braking types makes it possible to dynamically classify three driving styles: cautious, normal and aggressive. The proposed classifications allow it possible to identify the driving styles on the basis of the pressure in the hydraulic brake circuit, the force exerted by the driver on the brake pedal, the longitudinal deceleration and the braking power, knowing in all cases the speed of the vehicle. The experiments are limited by the fact that there are no other vehicles, obstacles, etc. in the vehicle's environment, but in this article the focus is exclusively on characterising a driver with methods that use the vehicle's dynamic responses measured by on-board sensors. The results of this study can be used to define the driving style of an autonomous vehicle.

3.
Sensors (Basel) ; 20(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751916

RESUMO

In this article, a new force transducer is designed, developed and built for the measurement of braking forces in the wheel rim of a motor vehicle. The parameters of the transducer design are justified using numerical simulation. In order to install it in the vehicle in a simple and interference-free way, the metal base of the caliper rod is used. It is manufactured and installed in a vehicle in order to obtain the signals of the wheel braking torque, in real time, and at different speeds of circulation, carrying out several tests on the track. Subsequently, data are obtained from calculations of the disc brake system itself. The latter provides instantaneous adherence values between the brake pad and the disc.

4.
Sensors (Basel) ; 18(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149589

RESUMO

An improper decision for the design, selection and adjustment of the components needed to control a vehicle could generate negative effects and discomfort to the driver, where pedals play a very important role. The aim of the study is to provide a first approach to develop an embedded monitoring device in order to evaluate the posture of the driver, the influence of the clutch pedal and to advise about the possible risk. With that purpose in mind, a testbed was designed and two different sets of tests were carried out. The first test collected information about the volunteers who were part of the experiment, like the applied force on the clutch pedal or the body measurements. The second test was carried out to provide new insight into this matter. One of the more significant findings to emerge from this study is that the force applied on the clutch pedal provides enough information to determine correct driver posture. For this reason, a system composed of a pedal force sensor and an acquisition/processing system can fulfil the requirements to create a healthcare system focused on driver posture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...