Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biol Reprod ; 101(5): 961-974, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347667

RESUMO

The ovarian surface epithelium (OSE) is a monolayer of cells surrounding the ovary that is ruptured during ovulation. After ovulation, the wound is repaired, however, this process is poorly understood. In epithelial tissues, wound repair is mediated by an epithelial-to-mesenchymal transition (EMT). Transforming Growth Factor Beta-1 (TGFß1) is a cytokine commonly known to induce an EMT and is present throughout the ovarian microenvironment. We, therefore, hypothesized that TGFß1 induces an EMT in OSE cells and activates signaling pathways important for wound repair. Treating primary cultures of mouse OSE cells with TGFß1 induced an EMT mediated by TGFßRI signaling. The transcription factor Snail was the only EMT-associated transcription factor increased by TGFß1 and, when overexpressed, was shown to increase OSE cell migration. A polymerase chain reaction array of TGFß signaling targets determined Cyclooxygenase-2 (Cox2) to be most highly induced by TGFß1. Constitutive Cox2 expression modestly increased migration and robustly enhanced cell survival, under stress conditions similar to those observed during wound repair. The increase in Snail and Cox2 expression with TGFß1 was reproduced in human OSE cultures, suggesting these responses are conserved between mouse and human. Finally, the induction of Cox2 expression in OSE cells during ovulatory wound repair was shown in vivo, suggesting TGFß1 increases Cox2 to promote wound repair by enhancing cell survival. These data support that TGFß1 promotes ovulatory wound repair by induction of an EMT and activation of a COX2-mediated pro-survival pathway. Understanding ovulatory wound repair may give insight into why ovulation is the primary non-hereditary risk factor for ovarian cancer.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Ovário/fisiologia , Cicatrização , Animais , Sobrevivência Celular , Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica , Camundongos , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...