Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
Front Immunol ; 15: 1418594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975337

RESUMO

Introduction: Maternal synbiotic supplementation during pregnancy and lactation can significantly influence the immune system. Prebiotics and probiotics have a positive impact on the immune system by preventing or ameliorating among others intestinal disorders. This study focused on the immunomodulatory effects of B. breve M-16V and short chain galacto-oligosaccharides (scGOS)/long chain fructo-oligosachairdes (lcFOS), including systemic and mucosal compartments and milk composition. Methods: Lewis rats were orally administered with the synbiotic or vehicle during pregnancy (21 days) and lactation (21 days). At the weaning day, small intestine (SI), mammary gland (MG), adipose tissue, milk, mesenteric lymph nodes (MLN), salivary gland (SG), feces and cecal content were collected from the mothers. Results: The immunoglobulinome profile showed increased IgG2c in plasma and milk, as well as elevated sIgA in feces at weaning. The supplementation improved lipid metabolism through enhanced brown adipose tissue activity and reinforced the intestinal barrier by increasing the expression of Muc3, Cldn4, and Ocln. The higher production of short chain fatty acids in the cecum and increased Bifidobacterium counts suggest a potential positive impact on the gastrointestinal tract. Discussion: These findings indicate that maternal synbiotic supplementation during gestation and lactation improves their immunological status and improved milk composition.


Assuntos
Bifidobacterium breve , Lactação , Leite , Oligossacarídeos , Animais , Feminino , Gravidez , Bifidobacterium breve/imunologia , Leite/imunologia , Leite/química , Ratos , Ratos Endogâmicos Lew , Suplementos Nutricionais , Simbióticos/administração & dosagem , Probióticos/administração & dosagem , Probióticos/farmacologia
2.
Foods ; 13(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998564

RESUMO

Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants' immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation's effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition.

3.
Front Nutr ; 11: 1371064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006103

RESUMO

Introduction: Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods: Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results: The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion: This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.

4.
Nutrients ; 16(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931246

RESUMO

Immune system development during gestation and suckling is significantly modulated by maternal environmental and dietary factors. Breastfeeding is widely recognized as the optimal source of nutrition for infant growth and immune maturation, and its composition can be modulated by the maternal diet. In the present work, we investigated whether oral supplementation with Bifidobacterium breve M-16V and short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) to rat dams during gestation and lactation has an impact on the immune system and microbiota composition of the offspring at day 21 of life. On that day, blood, adipose tissue, small intestine (SI), mesenteric lymph nodes (MLN), salivary gland (SG), cecum, and spleen were collected. Synbiotic supplementation did not affect the overall body or organ growth of the pups. The gene expression of Tlr9, Muc2, IgA, and Blimp1 were upregulated in the SI, and the increase in IgA gene expression was further confirmed at the protein level in the gut wash. Synbiotic supplementation also positively impacted the microbiota composition in both the small and large intestines, resulting in higher proportions of Bifidobacterium genus, among others. In addition, there was an increase in butanoic, isobutanoic, and acetic acid concentrations in the cecum but a reduction in the small intestine. At the systemic level, synbiotic supplementation resulted in higher levels of immunoglobulin IgG2c in plasma, SG, and MLN, but it did not modify the main lymphocyte subsets in the spleen and MLN. Overall, synbiotic maternal supplementation is able to positively influence the immune system development and microbiota of the suckling offspring, particularly at the gastrointestinal level.


Assuntos
Animais Lactentes , Bifidobacterium breve , Suplementos Nutricionais , Microbioma Gastrointestinal , Oligossacarídeos , Simbióticos , Animais , Simbióticos/administração & dosagem , Feminino , Gravidez , Ratos , Fenômenos Fisiológicos da Nutrição Materna , Lactação , Sistema Imunitário , Masculino , Animais Recém-Nascidos
5.
Front Pharmacol ; 15: 1388401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694925

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease which is often associated with gastrointestinal (GI) dysfunction. The GI tract is home to a wide range of microorganisms, among which bacteria, that can influence the host through various mechanisms. Products produced by these bacteria can act in the gut but can also exert effects in the brain via what is now well established to be the microbiota-gut-brain axis. In those with PD the gut-bacteria composition is often found to be different to that of non-PD individuals. In addition to compositional changes, the metabolic activity of the gut-microbiota is also changed in PD. Specifically, it is often reported that key producers of short chain fatty acids (SCFAs) as well as the concentration of SCFAs themselves are altered in the stool and blood of those with PD. These SCFAs, among which butyrate, are essential nutrients for the host and are a major energy source for epithelial cells of the GI tract. Additionally, butyrate plays a key role in regulating various host responses particularly in relation to inflammation. Studies have demonstrated that a reduction in butyrate levels can have a critical role in the onset and progression of PD. Furthermore, it has been shown that restoring butyrate levels in those with PD through methods such as probiotics, prebiotics, sodium butyrate supplementation, and fecal transplantation can have a beneficial effect on both motor and non-motor outcomes of the disease. This review presents an overview of evidence for the altered gut-bacteria composition and corresponding metabolite production in those with PD, with a particular focus on the SCFA butyrate. In addition to presenting current studies regarding SCFA in clinical and preclinical reports, evidence for the possibility to target butyrate production using microbiome based approaches in a therapeutic context is discussed.

6.
Brain Behav Immun Health ; 38: 100792, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737965

RESUMO

Studies have reported sex and age differences in self-rated health. On average, women rate their health as being poorer compared to men, and older individuals report poorer health than younger individuals. The current study evaluated sex and age differences for self-reported immune fitness, i.e. the capacity of the body to respond to health challenges (such as infections) by activating an appropriate immune response in order to promote health and prevent and resolve disease. Data from different survey studies (N = 8586) were combined for the current analyses. N = 8064 participants (93.3%) completed the single-item scale to assess momentary immune fitness (mean (Standard deviation, SD) age of 32.4 (16.7) years old, range: 18 to 103, 68.0% women) and N = 4263 participants (49.7%) completed the Immune Status Questionnaire (ISQ) to assess past year's immune fitness (mean (SD) age of 40.9 (17.1) years old, range: 18 to 103, 61.1% women). The analyses revealed that women rated their momentary and past year's immune fitness significantly lower than men (p < 0.001). A small but significant decline in momentary immune fitness when aging was found (r = -0.073, p < 0.001). In contrast, past year's immune fitness steadily improved with progressing age (r = 0.295, p < 0.001), and for each age group the difference from the 18-24 years old group was statistically significant (p < 0.001). When using age as covariate, the sex differences in immune fitness remained significant for both momentary immune fitness (p < 0.001) and past year's immune fitness (p < 0.001). In conclusion, women report a poorer momentary and past year's immune fitness than men. The sex effects in immune fitness are robust and seen across all age groups except the elderly. A relative stable momentary immune fitness was found across the age groups. However, past year's immune fitness (assessments with the ISQ) improved with age. This observation may be related to the fact that the studies comprised convenience samples. Therefore, the observed age effects should be interpreted with caution and require further investigation in nationally representative samples.

7.
Exp Mol Pathol ; 137: 104897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691979

RESUMO

BACKGROUND: Signaling by toll-like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. MATERIAL & METHODS: 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex-matched healthy control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8, and 9 agonists, the spike protein (SP) of SARS-CoV-2, and the receptor binding domain (RBD) of SP. Frequencies of CD3+IFN-ß+ T cells, and CD3+IFN-γ+ T cells were evaluated by flow cytometry. Interferon (IFN)-ß gene expression was assessed by qRT-PCR. RESULTS: The frequency of CD3+IFN-ß+ T cells was higher in PBMCs from moderate (p < 0.0001) and severe (p = 0.009) patients at baseline in comparison with HCs. The highest increase in the frequency of CD3+IFN-ß+ T cells in cell from moderate patients was induced by TLR8 agonist and SP (p < 0.0001 for both) when compared to HC, while, the highest increase of the frequency of CD3+IFN-ß+ T cells in sample of severe patients was seen with TLR8 and TLR7 agonists (both p = 0.002). The frequency of CD3+IFN-γ+ T cells was significantly increased upon stimulation with TLR agonists in cell from patients with moderate and severe COVID-19, compared with HC (all p < 0.01), except with TLR7 and TLR8 agonists. The TLR8 agonist did not significantly increase the frequency of CD3+IFN-γ+ T cells in PBMCs of severe patients, but did so in cells from patients with moderate disease (p = 0.01). Moreover, IFN-ß gene expression was significantly upregulated in CD3+T cells from moderate (p < 0.0001) and severe (p = 0.002) COVID-19 patients, compared to HC after stimulation with the TLR8 agonist, while, stimulation of T cells with SP, significantly up-regulated IFN-ß mRNA expression in cells from patients with moderate (p = 0.0003), but not severe disease. CONCLUSION: Stimulation of PBMCs from COVID-19 patients, especially patients with moderate disease, with TLR8 agonist and SP increased the frequency of IFN-ß-producing T cells and IFN-ß gene expression.


Assuntos
Complexo CD3 , COVID-19 , SARS-CoV-2 , Linfócitos T , Receptores Toll-Like , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Receptores Toll-Like/agonistas , Receptores Toll-Like/genética , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Adulto , Interferon gama/metabolismo , Interferon gama/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Interferon beta/genética , Interferon beta/imunologia , Idoso , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Agonistas do Receptor Semelhante a Toll
8.
Food Funct ; 15(12): 6488-6501, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38804660

RESUMO

Mustard seeds belong to the food category of mandatory labelling due to the severe reactions they can trigger in allergic patients. However, the mechanisms underlying allergic sensitization to mustard seeds are poorly understood. The aim of this work is to study type 2 immune activation induced by the mustard seed major allergen Sin a1 via the intestinal mucosa, employing an in vitro model mimicking allergen exposure via the intestinal epithelial cells (IECs). Sin a1 was isolated from the total protein extract and exposed to IEC, monocyte derived dendritic cells (DCs) or IEC/DC co-cultures. A system of consecutive co-cultures was employed to study the generic capacity of Sin a1 to induce type 2 activation leading to sensitization: IEC/DC, DC/T-cell, T/B-cell and stem cell derived mast cells (MCs) derived from healthy donors. Immune profiles were determined by ELISA and flow cytometry. Sin a1 activated IEC and induced type-2 cytokine secretion in IEC/DC co-culture or DC alone (IL-15, IL-25 and TSLP), and primed DC induced type 2 T-cell skewing. IgG secretion in the T-cell/B-cell phase was enhanced in the presence of Sin a1 in the first stages of the co-culture. Anti-IgE did not induce degranulation but promoted IL-13 and IL-4 release by MC primed with the supernatant from B-cells co-cultured with Sin a1-IEC/DC or -DC primed T-cells. Sin a1 enhanced the release of type-2 inflammatory mediators by epithelial and dendritic cells; the latter instructed generic type-2 responses in T-cells that resulted in B-cell activation, and finally MC activation upon anti-IgE exposure. This indicates that via activation of IEC and/or DC, mustard seed allergen Sin a1 is capable of driving type 2 immunity which may lead to allergic sensitization.


Assuntos
Alérgenos , Células Dendríticas , Células Epiteliais , Mostardeira , Sementes , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Humanos , Sementes/química , Alérgenos/imunologia , Células Epiteliais/imunologia , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/imunologia , Técnicas de Cocultura , Antígenos de Plantas/imunologia , Mastócitos/imunologia , Mastócitos/efeitos dos fármacos , Imunoglobulina E/imunologia , Citocinas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/farmacologia
9.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589690

RESUMO

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.

10.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612871

RESUMO

Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.


Assuntos
Fumar Cigarros , Doença de Crohn , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença de Crohn/genética , Fumar Cigarros/efeitos adversos , RNA Ribossômico 16S , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica/genética , Glicoproteínas de Membrana
11.
Adv Healthc Mater ; : e2304569, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625078

RESUMO

Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.

12.
Am J Clin Nutr ; 120(1): 240-256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677518

RESUMO

Food and nutrition-related factors have the potential to impact development of autism spectrum disorder (ASD) and quality of life for people with ASD, but gaps in evidence exist. On 10 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships of food and nutrition with ASD. This meeting report summarizes the presentations and deliberations from the meeting. Topics addressed included prenatal and child dietary intake, the microbiome, obesity, food-related environmental exposures, mechanisms and biological processes linking these factors and ASD, food-related social factors, and data sources for future research. Presentations highlighted evidence for protective associations with prenatal folic acid supplementation and ASD development, increases in risk of ASD with maternal gestational obesity, and the potential for exposure to environmental contaminants in foods and food packaging to influence ASD development. The importance of the maternal and child microbiome in ASD development or ASD-related behaviors in the child was reviewed, as was the role of discrimination in leading to disparities in environmental exposures and psychosocial factors that may influence ASD. The role of child diet and high prevalence of food selectivity in children with ASD and its association with adverse outcomes were also discussed. Priority evidence gaps identified by participants include further clarifying ASD development, including biomarkers and key mechanisms; interactions among psychosocial, social, and biological determinants; interventions addressing diet, supplementation, and the microbiome to prevent and improve quality of life for people with ASD; and mechanisms of action of diet-related factors associated with ASD. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/etiologia , Feminino , Gravidez , Criança , Dieta , Estado Nutricional , Suplementos Nutricionais , Ácido Fólico/administração & dosagem
13.
Clin Nutr ; 43(4): 969-980, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452522

RESUMO

BACKGROUND & AIMS: Improving maternal gut health in pregnancy and lactation is a potential strategy to improve immune and metabolic health in offspring and curtail the rising rates of inflammatory diseases linked to alterations in gut microbiota. Here, we investigate the effects of a maternal prebiotic supplement (galacto-oligosaccharides and fructo-oligosaccharides), ingested daily from <21 weeks' gestation to six months' post-partum, in a double-blinded, randomised placebo-controlled trial. METHODS: Stool samples were collected at multiple timepoints from 74 mother-infant pairs as part of a larger, double-blinded, randomised controlled allergy intervention trial. The participants were randomised to one of two groups; with one group receiving 14.2 g per day of prebiotic powder (galacto-oligosaccharides GOS and fructo-oligosaccharides FOS in ratio 9:1), and the other receiving a placebo powder consisting of 8.7 g per day of maltodextrin. The faecal microbiota of both mother and infants were assessed based on the analysis of bacterial 16S rRNA gene (V4 region) sequences, and short chain fatty acid (SCFA) concentrations in stool. RESULTS: Significant differences in the maternal microbiota profiles between baseline and either 28-weeks' or 36-weeks' gestation were found in the prebiotic supplemented women. Infant microbial beta-diversity also significantly differed between prebiotic and placebo groups at 12-months of age. Supplementation was associated with increased abundance of commensal Bifidobacteria in the maternal microbiota, and a reduction in the abundance of Negativicutes in both maternal and infant microbiota. There were also changes in SCFA concentrations with maternal prebiotics supplementation, including significant differences in acetic acid concentration between intervention and control groups from 20 to 28-weeks' gestation. CONCLUSION: Maternal prebiotic supplementation of 14.2 g per day GOS/FOS was found to favourably modify both the maternal and the developing infant gut microbiome. These results build on our understanding of the importance of maternal diet during pregnancy, and indicate that it is possible to intervene and modify the development of the infant microbiome by dietary modulation of the maternal gut microbiome.


Assuntos
Microbiota , Prebióticos , Feminino , Humanos , Lactente , Gravidez , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Lactação , Mães , Oligossacarídeos , Pós , RNA Ribossômico 16S , Recém-Nascido
14.
Sci Rep ; 14(1): 814, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191575

RESUMO

Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized by deficits in sociability and repetitive behaviour, however there is a great heterogeneity within other comorbidities that accompany ASD. Recently, gut microbiome has been pointed out as a plausible contributing factor for ASD development as individuals diagnosed with ASD often suffer from intestinal problems and show a differentiated intestinal microbial composition. Nevertheless, gut microbiome studies in ASD rarely agree on the specific bacterial taxa involved in this disorder. Regarding the potential role of gut microbiome in ASD pathophysiology, our aim is to investigate whether there is a set of bacterial taxa relevant for ASD classification by using a sibling-controlled dataset. Additionally, we aim to validate these results across two independent cohorts as several confounding factors, such as lifestyle, influence both ASD and gut microbiome studies. A machine learning approach, recursive ensemble feature selection (REFS), was applied to 16S rRNA gene sequencing data from 117 subjects (60 ASD cases and 57 siblings) identifying 26 bacterial taxa that discriminate ASD cases from controls. The average area under the curve (AUC) of this specific set of bacteria in the sibling-controlled dataset was 81.6%. Moreover, we applied the selected bacterial taxa in a tenfold cross-validation scheme using two independent cohorts (a total of 223 samples-125 ASD cases and 98 controls). We obtained average AUCs of 74.8% and 74%, respectively. Analysis of the gut microbiome using REFS identified a set of bacterial taxa that can be used to predict the ASD status of children in three distinct cohorts with AUC over 80% for the best-performing classifiers. Our results indicate that the gut microbiome has a strong association with ASD and should not be disregarded as a potential target for therapeutic interventions. Furthermore, our work can contribute to use the proposed approach for identifying microbiome signatures across other 16S rRNA gene sequencing datasets.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Microbiota , Criança , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Microbioma Gastrointestinal/genética , Aprendizado de Máquina
15.
BMC Bioinformatics ; 25(1): 26, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225565

RESUMO

BACKGROUND: In recent years, human microbiome studies have received increasing attention as this field is considered a potential source for clinical applications. With the advancements in omics technologies and AI, research focused on the discovery for potential biomarkers in the human microbiome using machine learning tools has produced positive outcomes. Despite the promising results, several issues can still be found in these studies such as datasets with small number of samples, inconsistent results, lack of uniform processing and methodologies, and other additional factors lead to lack of reproducibility in biomedical research. In this work, we propose a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase reproducibility and obtain robust and reliable results in biomedical research. RESULTS: Three experiments were performed analyzing microbiome data from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder (ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature in one dataset and applied to 2 other as further validation. The effectiveness of the proposed methodology was compared with other feature selection methods such as K-Best with F-score and random selection as a base line. The Area Under the Curve (AUC) was employed as a measure of diagnostic accuracy and used as a metric for comparing the results of the proposed methodology with other feature selection methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric to evaluate the performance of the methodology as well as for comparison with other feature selection methods. CONCLUSIONS: We developed a methodology for reproducible biomarker discovery for 16s rRNA microbiome sequence analysis, addressing the issues related with data dimensionality, inconsistent results and validation across independent datasets. The findings from the three experiments, across 9 different datasets, show that the proposed methodology achieved higher accuracy compared to other feature selection methods. This methodology is a first approach to increase reproducibility, to provide robust and reliable results.


Assuntos
Transtorno do Espectro Autista , Pesquisa Biomédica , Diabetes Mellitus Tipo 2 , Microbiota , Humanos , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Diabetes Mellitus Tipo 2/genética , Aprendizado de Máquina , Biomarcadores , Microbiota/genética
16.
Trends Biotechnol ; 42(1): 119-134, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580191

RESUMO

The global population is growing, rapidly increasing the demand for sustainable, novel, and safe food proteins with minimal risks of food allergy. In vitro testing of allergy-sensitizing capacity is predominantly based on 2D assays. However, these lack the 3D environment and crosstalk between the gut, skin, and immune cells essential for allergy prediction. Organ-on-a-chip (OoC) technologies are promising to study type 2 immune activation required for sensitization, initiated in the small intestine or skin, in interlinked systems. Increasing the mechanistic understanding and, moreover, finding new strategies to study interorgan communication is of importance to recapitulate food allergen sensitization in vitro. Here, we outline recently developed OoC platforms and discuss the features needed for reliable prediction of sensitizing allergenicity of proteins.


Assuntos
Hipersensibilidade Alimentar , Imunoglobulina E , Humanos , Pele , Alérgenos , Dispositivos Lab-On-A-Chip
17.
J Allergy Clin Immunol ; 153(3): 780-792, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972740

RESUMO

BACKGROUND: Exposure of the esophageal mucosa to food allergens can cause acute mucosal responses in patients with eosinophilic esophagitis (EoE), but the underlying local immune mechanisms driving these acute responses are not well understood. OBJECTIVE: We sought to gain insight into the early transcriptomic changes that occur during an acute mucosal response to food allergens in EoE. METHODS: Bulk RNA sequencing was performed on esophageal biopsy specimens from adult patients with EoE (n = 5) collected before and 20 minutes after intramucosal injection of various food extracts in the esophagus. Baseline biopsy specimens from control subjects without EoE (n = 5) were also included. RESULTS: At baseline, the transcriptome of the patients with EoE showed increased expression of genes related to an EoE signature. After local food injection, we identified 40 genes with a potential role in the early immune response to food allergens (most notably CEBPB, IL1B, TNFSF18, PHLDA2, and SLC15A3). These 40 genes were enriched in processes related to immune activation, such as the acute-phase response, cellular responses to external stimuli, and cell population proliferation. TNFSF18 (also called GITRL), a member of the TNF superfamily that is best studied for its costimulatory effect on T cells, was the most dysregulated early EoE gene, showing a 12-fold increase compared with baseline and an 18-fold increase compared with a negative visual response. Further experiments showed that the esophageal epithelium may be an important source of TNFSF18 in EoE, which was rapidly induced by costimulating esophageal epithelial cells with the EoE-relevant cytokines IL-13 and TNF-α. CONCLUSIONS: Our data provide unprecedented insight into the transcriptomic changes that mediate the acute mucosal immune response to food allergens in EoE and suggest that TNFSF18 may be an important effector molecule in this response.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Hipersensibilidade Alimentar , Gastrite , Adulto , Humanos , Mucosa Esofágica , Alérgenos , Hipersensibilidade Alimentar/genética , Perfilação da Expressão Gênica
18.
PLoS One ; 18(11): e0291297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992002

RESUMO

AIM: To investigate the effects of exercise on salivary concentrations of inflammatory markers by analyzing a panel of 25 inflammatory markers in subjects who had participated in bicycle ergometer tests varying in workload and hydration status. METHODS: Fifteen healthy young men (20-35 years) had performed 4 different exercise protocols of 1 hour duration in a randomly assigned cross-over design, preceded by a rest protocol. Individual workloads depended on participant's pre-assessed individual maximum workload (Wmax): rest (protocol 1), 70% Wmax in hydrated (protocol 2) and dehydrated (protocol 3) state, 50% Wmax (protocol 4) and intermittent 85%/55% Wmax in 2 min blocks (protocol 5). Saliva samples were collected before (T0) and immediately after exercise (T1), and at several time points after exercise (2 hours (T3), 3 hours (T4), 6 hours (T5) and 24 hours (T6)). Secretory Leukocyte Protease Inhibitor (SLPI), Matrix Metallopeptidase-9 (MMP-9) and lactoferrin was analyzed using a commercial ELISA kit, a panel of 22 cytokines and chemokines were analyzed using a commercial multiplex immunoassay. Data was analyzed using a multilevel mixed linear model, with multiple test correction. RESULTS: Among a panel of 25 inflammatory markers, SLPI concentrations were significantly elevated immediately after exercise in all protocols compared to rest and higher concentrations reflected the intensity of exercise and hydration status. MMP-9 showed a significant increase in the 70% Wmax dehydrated, 50% Wmax and intermittent protocols. CONCLUSIONS: Salivary concentrations of SLPI and MMP-9 seem associated with exercise intensity and hydration status and may offer non-invasive biomarkers to study (local) inflammatory responses to different exercise intensities in human studies.


Assuntos
Metaloproteinase 9 da Matriz , Inibidor Secretado de Peptidases Leucocitárias , Masculino , Humanos , Saliva/química , Exercício Físico/fisiologia
19.
Pediatr Allergy Immunol ; 34(11): e14043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010006

RESUMO

The worldwide rising prevalence of food allergy is a major public health concern. Standard care consists of allergen avoidance and rescue medication upon accidental exposure. Oral immunotherapy (OIT) is increasingly being studied as a treatment option. Although desensitization (an increased reaction threshold) is often achieved during OIT, sustained unresponsiveness (SU; clinical nonreactivity after finishing OIT) is not achieved in most patients. A few studies have investigated the effectiveness of OIT in children younger than 4 years of age (early = e-OIT) and have shown a much more favorable outcome in terms of SU development. Together with food allergy prevention studies, which have demonstrated high efficacy of early oral allergen exposure, the outcomes of e-OIT studies indicate an early-life window of opportunity to achieve SU, allowing unrestricted dietary intake. However, the underlying mechanism of the high effectiveness of e-OIT is not understood yet. Both cohort and OIT studies indicate early-life immune plasticity. An immature food-allergic response in the first years of life seems to be a major driver of this immune plasticity, along with a higher tolerogenic immunological state. Allergy maturation can likely be disrupted effectively by early intervention, preventing the development of persistent food allergy. Upcoming studies will provide important additional data on the safety, feasibility, and effectiveness of e-OIT. Combined with immune mechanistic studies, this should inform the implementation of e-OIT.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade Alimentar , Humanos , Pré-Escolar , Alimentos , Alérgenos , Ingestão de Alimentos , Administração Oral
20.
Am J Respir Crit Care Med ; 208(11): 1240-1241, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672769
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...