Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Immunol ; 204(7): 1849-1858, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32102903

RESUMO

Development of invasive aspergillosis correlates with impairments in innate immunity. We and others have recently shown that arachidonic acid metabolism pathways, specifically the cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) pathways, participate in the induction of protective innate immune responses during invasive aspergillosis. Based on the high degree of cooperation and interconnection within the eicosanoid network, we hypothesized that 12/15-LOX is also active during invasive aspergillosis. We report in this study that mice deficient in the gene encoding 12/15-LOX (Alox15) are profoundly susceptible to invasive aspergillosis. Decreased survival correlated with increased fungal burden and evidence of increased lung damage. These defects were associated with very early (6 and 12 h) 12/15-LOX-dependent inflammatory cytokine (IL-1α, IL-1ß, and TNF-α) and chemokine (CCL3 and CCL4) production. Neutrophil levels in the lung were blunted in the absence of 12/15-LOX, although neutrophil antifungal activity was intact. However, lower neutrophil levels in the lungs of Alox15 -/- mice were not a result of impaired recruitment or survival; rather, Alox15 -/- mice demonstrated impaired neutrophil granulopoiesis in the bone marrow intrinsically and after fungal exposure. Employing a lower inoculum to allow for better survival allowed the identification of 12/15-LOX-dependent induction of IL-17A and IL-22. Impaired IL-17A and IL-22 production correlated with reduced invariant NKT cell numbers as well as lower IL-23 levels. Together, these data indicate that 12/15-LOX is a critical player in induction of the earliest aspects of the innate immune response to Aspergillus fumigatus.

3.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550242

RESUMO

Severe asthma with fungal sensitization (SAFS) defines a subset of human asthmatics with allergy to 1 or more fungal species and difficult-to-control asthma. We have previously reported that human asthmatics sensitized to fungi have worse lung function and a higher degree of atopy, which was associated with higher IL-1 receptor antagonist (IL-1RA) levels in bronchoalveolar lavage fluid. IL-1RA further demonstrated a significant negative association with bronchial hyperresponsiveness to methacholine. Here, we show that IL-1α and IL-1ß are elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with IL-1α, IL-1ß, or IL-1RA in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that IL-1R1 signaling promotes type 1 (IFN-γ, CXCL9, CXCL10) and type 17 (IL-17A, IL-22) responses that were associated with neutrophilic inflammation and increased airway hyperreactivity. Each of these were exacerbated in the absence of IL-1RA. Administration of human recombinant IL-1RA (Kineret/anakinra) during fungal-associated allergic airway inflammation improved airway hyperreactivity and lowered type 1 and type 17 responses. Taken together, these data suggest that IL-1R1 signaling contributes to fungal asthma severity via immunopathogenic type 1 and type 17 responses and can be targeted for improving allergic asthma severity.


Assuntos
Asma/imunologia , Fungos/patogenicidade , Hipersensibilidade/imunologia , Proteína Antagonista do Receptor de Interleucina 1/fisiologia , Adulto , Animais , Asma/microbiologia , Hiper-Reatividade Brônquica , Líquido da Lavagem Broncoalveolar , Feminino , Humanos , Hipersensibilidade/microbiologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Escarro/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-30538676

RESUMO

The hexosamine biosynthetic pathway (HBP) generates the substrate for the O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of proteins. The HBP also serves as a stress sensor and has been reported to be involved with nuclear factor of activated T-cells (NFAT) activation, which can contribute to multiple cellular processes including cell metabolism, proliferation, and inflammation. In our previously published report, Fibroblast Growth Factor (FGF) 23, an important endocrine pro-inflammatory mediator, was shown to activate the FGFR4/phospholipase Cγ (PLCγ)/nuclear factor of activated T-cells (NFAT) signaling in chronic inflammatory airway diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Here, we demonstrate that FGF23 increased the O-GlcNAc modification of proteins in HBECs. Furthermore, the increase in O-GlcNAc levels by FGF23 stimulation resulted in the downstream activation of NFAT and secretion of interleukin-6 (IL-6). Conversely, inhibition of FGF23 signaling and/or O-GlcNAc transferase (OGT)/O-GlcNAc reversed these effects. Collectively, these data suggest that FGF23 induced IL-6 upregulation and secretion is, at least, partially mediated via the activation of the HBP and O-GlcNAc levels in HBECs. These findings identify a novel link whereby FGF23 and the augmentation of O-GlcNAc levels regulate airway inflammation through NFAT activation and IL-6 upregulation in HBECs. The crosstalk between these signaling pathways may contribute to the pathogenesis of chronic inflammatory airway diseases such as COPD and CF as well as metabolic syndromes, including diabetes.

5.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29712728

RESUMO

Chitin is a polysaccharide that provides structure and rigidity to the cell walls of fungi and insects. Mammals possess multiple chitinases, which function to degrade chitin, thereby supporting a role for chitinases in immune defense. However, chitin degradation has been implicated in the pathogenesis of asthma. Here, we determined the impact of acidic mammalian chitinase (AMCase) (Chia) deficiency on host defense during acute exposure to the fungal pathogen Aspergillus fumigatus as well as its contribution to A. fumigatus-associated allergic asthma. We demonstrate that chitin in the fungal cell wall was detected at low levels in A. fumigatus conidia, which emerged at the highest level during hyphal transition. In response to acute A. fumigatus challenge, Chia-/- mice unexpectedly demonstrated lower A. fumigatus lung burdens at 2 days postchallenge. The lower fungal burden correlated with decreased lung interleukin-33 (IL-33) levels yet increased IL-1ß and prostaglandin E2 (PGE2) production, a phenotype that we reported previously to promote the induction of IL-17A and IL-22. During chronic A. fumigatus exposure, AMCase deficiency resulted in lower dynamic and airway lung resistance than in wild-type mice. Improved lung physiology correlated with attenuated levels of the proallergic chemokines CCL17 and CCL22. Surprisingly, examination of inflammatory responses during chronic exposure revealed attenuated IL-17A and IL-22 responses, but not type 2 responses, in the absence of AMCase. Collectively, these data suggest that AMCase functions as a negative regulator of immune responses during acute fungal exposure and is a contributor to fungal asthma severity, putatively via the induction of proinflammatory responses.


Assuntos
Aspergillus fumigatus/imunologia , Quitinases/fisiologia , Aspergilose Pulmonar/imunologia , Animais , Asma/imunologia , Quimiocinas/análise , Quitina/análise , Feminino , Interleucina-33/análise , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/fisiopatologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aspergilose Pulmonar/fisiopatologia
7.
J Immunol ; 199(6): 2140-2148, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28784844

RESUMO

Members of the IL-1 family play protective and regulatory roles in immune defense against the opportunistic mold Aspergillus fumigatus In this study, we investigated the IL-1 family member IL-33 in lung defense against A. fumigatus IL-33 was detected in the naive lung, which further increased after exposure to A. fumigatus in a dectin-1-independent manner. Mice deficient in the receptor for IL-33 (Il1rl1-/-) unexpectedly demonstrated enhanced lung clearance of A. fumigatus IL-33 functioned as a negative regulator of multiple inflammatory cytokines, as IL-1α, IL-1ß, IL-6, IL-17A, and IL-22 were significantly elevated in fungal-exposed Il1rl1-/- mice. Subsequently, IL-33 administration to normal mice attenuated fungal-induced IL-17A and IL-22, but not IL-1α, IL-1ß, or IL-6, production. IL-33-mediated regulation of IL-17A and IL-22 did not involve the modulation of IL-23 but rather PGE2; PGE2 was significantly increased in fungal-exposed Il1rl1-/- mice, and normal mice produced less PGE2 after fungal exposure when administered IL-33, suggesting that IL-33-mediated regulation of IL-17A and IL-22 occurred at the level of PGE2 This was confirmed by in vivo cyclooxygenase 2 inhibition, which attenuated fungal-induced IL-17A and IL-22, as well as IL-1α, IL-1ß, and IL-6, production in Il1rl1-/- mice, resulting in impaired fungal clearance. We also show that a PGE2 receptor agonist increased, whereas a PGE2 synthase inhibitor decreased, the levels of IL-17A and IL-22 but not IL-1α, IL-1ß, or IL-6. This study establishes novel mechanisms of innate IL-17A/IL-22 production via PGE2 and regulation of the PGE2/IL-17A/IL-22 axis via IL-33 signaling during lung fungal exposure.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Interleucina-33/metabolismo , Pulmão/imunologia , Transdução de Sinais , Animais , Células Cultivadas , Dinoprostona/metabolismo , Humanos , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-17/metabolismo , Interleucinas/metabolismo , Lectinas Tipo C/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo I de Interleucina-1/genética , Interleucina 22
8.
J Innate Immun ; 9(3): 271-280, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231567

RESUMO

Invasive aspergillosis (IA) is one of the most difficult to treat and, consequently, one of the most lethal fungal infections known to man. Continued use of immunosuppressive agents during chemotherapy and organ transplantation often leads to the development of neutropenia, the primary risk factor for IA. However, IA is also becoming more appreciated in chronic diseases associated with corticosteroid therapy. The innate immune response to Aspergillus fumigatus, the primary agent in IA, plays a pivotal role in the recognition and elimination of organisms from the pulmonary system. This review highlights recent findings about innate host defense mechanisms, including novel aspects of innate cellular immunity and pathogen recognition, and the inflammatory mediators that control infection with A. fumigatus.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Pulmão/imunologia , Animais , Antifúngicos/metabolismo , Citocinas/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Pulmão/microbiologia , Receptores de Reconhecimento de Padrão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...