Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 13(3): 393-402, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23347565

RESUMO

Population sex ratio is an important metric for wildlife management and conservation, but estimates can be difficult to obtain, particularly for sexually monomorphic species or for species that differ in detection probability between the sexes. Noninvasive genetic sampling (NGS) using polymerase chain reaction (PCR) has become a common method for identifying sex from sources such as hair, feathers or faeces, and is a potential source for estimating sex ratio. If, however, PCR success is sex-biased, naively using NGS could lead to a biased sex ratio estimator. We measured PCR success rates and error rates for amplifying the W and Z chromosomes from greater sage-grouse (Centrocercus urophasianus) faecal samples, examined how success and error rates for sex identification changed in response to faecal sample exposure time, and used simulation models to evaluate precision and bias of three sex assignment criteria for estimating population sex ratio with variable sample sizes and levels of PCR replication. We found PCR success rates were higher for females than males and that choice of sex assignment criteria influenced the bias and precision of corresponding sex ratio estimates. Our simulations demonstrate the importance of considering the interplay between the sex bias of PCR success, number of genotyping replicates, sample size, true population sex ratio and accuracy of assignment rules for designing future studies. Our results suggest that using faecal DNA for estimating the sex ratio of sage-grouse populations has great potential and, with minor adaptations and similar marker evaluations, should be applicable to numerous species.


Assuntos
Conservação dos Recursos Naturais/métodos , Galliformes/genética , Genética Populacional/métodos , Reação em Cadeia da Polimerase/métodos , Razão de Masculinidade , Animais , Simulação por Computador , Fezes/química , Feminino , Idaho , Masculino , Modelos Genéticos , Sensibilidade e Especificidade
2.
Mol Ecol ; 19(18): 3938-51, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20735733

RESUMO

Genetic monitoring has rarely been used for wildlife translocations despite the potential benefits this approach offers, compared to traditional field-based methods. We applied genetic monitoring to the reintroduced brown bear population in northern Italy. From 2002 to 2008, 2781 hair and faecal samples collected noninvasively plus 12 samples obtained from captured or dead bears were used to follow the demographic and geographical expansion and changes in genetic composition. Individual genotypes were used to reconstruct the wild pedigree and revealed that the population increased rapidly, from nine founders to >27 individuals in 2008 (lambda=1.17-1.19). Spatial mapping of bear samples indicated that most bears were distributed in the region surrounding the translocation site; however, individual bears were found up to 163 km away. Genetic diversity in the population was high, with expected heterozygosity of 0.74-0.79 and allelic richness of 4.55-5.41. However, multi-year genetic monitoring data showed that mortality rates were elevated, immigration did not occur, one dominant male sired all cubs born from 2002 to 2005, genetic diversity declined, relatedness increased, inbreeding occurred, and the effective population size was extremely small (Ne=3.03, ecological method). The comprehensive information collected through genetic monitoring is critical for implementing future conservation plans for the brown bear population in the Italian Alps. This study provides a model for other reintroduction programmes by demonstrating how genetic monitoring can be implemented to uncover aspects of the demography, ecology and genetics of small and reintroduced populations that will advance our understanding of the processes influencing their viability, evolution, and successful restoration.


Assuntos
Conservação dos Recursos Naturais/métodos , Genética Populacional , Ursidae/genética , Animais , Feminino , Variação Genética , Genótipo , Endogamia , Itália , Masculino , Repetições de Microssatélites , Densidade Demográfica
3.
Oecologia ; 75(2): 253-265, 1988 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28310843

RESUMO

We studied resource partitioning among the forest owls in the River of No Return Wilderness, Idaho, during the winter and spring of 1980 and 1981. The owl assemblage consisted of five abundant species: pygmy (Glaucidium gnoma), saw-whet (Aegolius acadicus), boreal (A. funereus), western screech (Otus kennicottii), and great-horned (Bubo virginianus). Long-eared (Asio otus) and flammulated (O. flammeolus) owls were rarely observed. Information from the literature supplemented our data to describe the pattern of resource partitioning. Stepwise discriminant function analysis and multivariate analysis of variance revealed differences in macrohabitat and microhabitat. The saw-whet, boreal, western screech, and great-horned owls all preferred mammalian prey but exhibited habitat differences. They also differed in activity periods and food habits. The pygmy owl, a food and habitat generalist, foraged diurnally more than the other species and took a higher proportion of brids. The flammulated owl used areas within the territories of other owl species but specialized on forest insects. The observed pattern of resource use was interpreted to result from environmental factors, morphological limitations and interspecific competition. Differences in food and activity time, we suggest, result from environmental factors and differences in owl morphology, while present-day interspecific competition may be important in shaping habitat use. Experiments will be necessary to determine the causal factors responsible for segregation among the forest owls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...