Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ERJ Open Res ; 8(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35923420

RESUMO

COPD patients have increased susceptibility to airway bacterial colonisation. Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae are three of the most common respiratory bacterial species in COPD. H. influenzae colonisation, but not other bacteria, in COPD patients is associated with higher sputum neutrophil counts. Alveolar macrophages are key in clearance of bacteria as well as releasing mediators to recruit and activate other immune cells in response to infection. The aim was to characterise differences in COPD macrophage responses to H. influenzae, M. catarrhalis and S. pneumoniae, focusing on release of inflammatory and chemotactic mediators, and apoptosis regulation. Lung macrophages and monocyte-derived macrophages from COPD patients and control subjects were exposed to H. influenzae, M. catarrhalis or S. pneumoniae. Cytokine secretion (tumour necrosis factor-α, interleukin (IL)-6, CXCL8, CCL5 and IL-1ß) were measured by ELISA and quantitative reverse transcriptase PCR (RT-qPCR), and apoptosis genes MCL-1, BCL-2, BAX and BAK1 by RT-qPCR. Apoptosis and reactive oxygen species (ROS) release were also measured. Macrophages responded differentially to the bacterial species, with increased, prolonged production of the neutrophil chemoattractant CXCL8 in response to H. influenzae and M. catarrhalis but not S. pneumoniae. S. pneumoniae initiated macrophage apoptosis and ROS release, H. influenzae and M. catarrhalis did not and increased anti-apoptosis gene expression (BCL-2 5.5-fold and MCL-1 2.4-fold, respectively). Differential cytokine responses of macrophages to these bacterial species can explain neutrophilic airway inflammation associated with H. influenzae, but not S. pneumoniae in COPD. Furthermore, delayed macrophage apoptosis is a potential mechanism contributing to inability to clear H. influenzae.

2.
Clin Exp Immunol ; 206(1): 99-109, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34143447

RESUMO

Defective phagocytosis has been shown in chronic obstructive pulmonary disease (COPD) bronchoalveolar lavage and blood monocyte-derived macrophages. Phagocytic capabilities of sputum macrophages and neutrophils in COPD are unknown. We investigated phagocytosis in these cells from COPD patients and controls. Phagocytosis of Streptococcus pneumoniae or fluorescently labelled non-typeable Haemophilus influenzae (NTHi) by sputum macrophages and neutrophils was determined by gentamycin protection assay (COPD; n = 5) or flow cytometry in 14 COPD patients, 8 healthy smokers (HS) and 9 healthy never-smokers (HNS). Sputum macrophages and neutrophils were differentiated by adherence for the gentamycin protection assay or receptor expression (CD206 and CD66b, respectively), by flow cytometry. The effects of NTHi on macrophage expression of CD206 and CD14 and neutrophil expression of CD16 were determined by flow cytometry. There was greater uptake of S. pneumoniae [~10-fold more colony-forming units (CFU)/ml] by sputum neutrophils compared to macrophages in COPD patients. Flow cytometry showed greater NTHi uptake by neutrophils compared to macrophages in COPD (67 versus 38%, respectively) and HS (61 versus 31%, respectively). NTHi uptake by macrophages was lower in HS (31%, p = 0.019) and COPD patients (38%, p = 0.069) compared to HNS (57%). NTHi uptake by neutrophils was similar between groups. NTHi exposure reduced CD206 and CD14 expression on macrophages and CD16 expression on neutrophils. Sputum neutrophils showed more phagocytic activity than macrophages. There was some evidence that bacterial phagocytosis was impaired in HS sputum macrophages, but no impairment of neutrophils was observed in HS or COPD patients. These results highlight the relative contributions of neutrophils and macrophages to bacterial clearance in COPD.


Assuntos
Haemophilus influenzae/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Fagocitose , Doença Pulmonar Obstrutiva Crônica/imunologia , Escarro/imunologia , Streptococcus mutans/imunologia , Adulto , Idoso , Antígenos CD/imunologia , Feminino , Citometria de Fluxo , Humanos , Macrófagos/microbiologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Escarro/microbiologia
3.
Clin Sci (Lond) ; 134(7): 751-763, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32227160

RESUMO

The numbers of macrophages are increased in the lungs of chronic obstructive pulmonary disease (COPD) patients. COPD lung macrophages have reduced ability to phagocytose microbes and efferocytose apoptotic cells. Inhaled corticosteroids (ICSs) are widely used anti-inflammatory drugs in COPD; however, their role beyond suppression of cytokine release has not been explored in COPD macrophages. We have examined the effects of corticosteroids on COPD lung macrophage phenotype and function. Lung macrophages from controls and COPD patients were treated with corticosteroids; effects on gene and protein expression of CD163, CD164, CD206, MERTK, CD64, CD80 and CD86 were studied. We also examined the effect of corticosteroids on the function of CD163, MERTK and cluster of differentiation 64 (CD64). Corticosteroid increased CD163, CD164, CD206 and MERTK expression and reduced CD64, CD80 and CD86 expression. We also observed an increase in the uptake of the haemoglobin-haptoglobin complex (CD163) from 59 up to 81% and an increase in efferocytosis of apoptotic neutrophils (MERTK) from 15 up to 28% following corticosteroid treatment. We observed no effect on bacterial phagocytosis. Corticosteroids alter the phenotype and function of COPD lung macrophages. Our findings suggest mechanisms by which corticosteroids exert therapeutic benefit in COPD, reducing iron available for bacterial growth and enhancing efferocytosis.


Assuntos
Corticosteroides/farmacologia , Dexametasona/farmacologia , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Células Cultivadas , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica , Humanos , Ferro/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Fenótipo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Transdução de Sinais , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo
4.
Respir Res ; 18(1): 90, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28494757

RESUMO

BACKGROUND: Increased lung macrophage numbers in COPD may arise from upregulation of blood monocyte recruitment into the lungs. CCR5 is a monocyte chemokine receptor regulated by interleukin-6 (IL-6); the concentration of CCR5 ligands are known to be elevated in COPD lungs. The objective of this study was to investigate mechanisms of monocyte recruitment to the lung in COPD, including the role of CCR5 signalling. METHODS: Ninety one COPD patients, 29 smokers (S) and 37 non-smokers (NS) underwent sputum induction, plasma sampling (to measure IL-6 and soluble IL-6 receptor [sIL-6R] by immunoassay), monocyte characterization (by flow cytometry) and monocyte isolation for cell migration and quantitative polymerase chain reaction studies. Lung tissue was used for immunohistochemistry. RESULTS: Plasma IL-6 and sIL-6R levels were increased in COPD. Greater proportions of COPD CD14++CD16+ monocytes expressed CCR5 compared to controls. Monocyte stimulation with IL-6 and sIL-6R increased CCR5 gene expression. COPD monocytes demonstrated impaired migration towards sputum supernatant compared to NS (% migration, 4.4 vs 11.5, respectively; p < 0.05). Pulmonary microvessels showed reduced monocyte recruitment (% marginated cells) in COPD compared to NS, (9.3% vs 83.1%, respectively). The proportion of replicating Ki67+ alveolar macrophages was reduced in COPD compared to NS. All alveolar macrophages from COPD and S expressed the anti-apoptosis marker BCL2; this protein was not present in non-smokers or COPD ex-smokers. CONCLUSION: COPD monocytes show decreased migratory ability despite increased CCR5 expression. Increased COPD lung macrophage numbers may be due to delayed apoptosis.


Assuntos
Movimento Celular/imunologia , Monócitos/imunologia , Monócitos/patologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores CCR5/imunologia , Idoso , Células Cultivadas , Feminino , Humanos , Interleucina-6/sangue , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Receptores CCR5/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...