Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36557101

RESUMO

This research aims to study the removal of Cobalt (Co) using chitin. The optimum conditions for removing Co were ascertained through batch experiments. This study involves the determination of chitin metal-binding efficiency by using a polymer enhanced diafiltration setup that utilizes a membrane process (ultrafiltration) to keep the Chitin. The effects of several parameters on sorption like pH, the concentrations of chitin, and Co were examined. The best efficiency was reached if the setup was run at pH < 6.3 (i.e., chitin pKa). At acidic conditions and by employing 6 g/L of chitin, Co level (20 mg/L) was decreased at 95%. To further investigate the kinetics of sorption for each gram of chitin, equilibrium experiments were carried out. For 1−100 mM Co, the performed rheological measurements show that chitin was observed to be moderately shear thickening at relatively lower levels (4 and 6 g/L); further, it was moderately shear thinning at slightly more important levels (12 and 20 g/L). Some improvement of the raw polymer will be necessary to enhance sorption to a sustainable limit and make this scheme an economically viable process.

2.
ACS Omega ; 7(26): 22456-22476, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811923

RESUMO

Pollutants derived from real textile wastewater present a high environmental risk. This work involves the study of the removal of chemical oxygen demand (COD), color, and turbidity from Tunisian real textile wastewater by two different water treatment technologies: chemical coagulation (CC) and electrocoagulation (EC). A comparative study between these two methods was conducted based on the separation performance and operating cost (OC). The effects of different operational parameters including electrolysis time (t), voltage, and pH for EC and the coagulant concentration, initial pH, and time of slow mixing (t sm) for CC were studied using response surface methodology. The developed quadratic models for the responses were in good agreement with the experimental data. The experiments proved the efficiency of both chemical and electrochemical techniques for the treatment of textile effluent. Indeed, by using EC, the reduction efficiencies of COD, color, and turbidity were 63.05, 99.07, and 96.31%, respectively, under optimal conditions (pH 9, t = 36.26 min, and voltage 4 V). For CC treatment, the achieved removal efficiencies of COD, color, and turbidity were 54.02, 96.21, and 93.7%, respectively, at pH 8.57, a coagulant concentration of 204.75 mg/L, and a t sm of 28.41 min as optimal operating conditions. The OC obtained for EC and CC was about 0.47 and 0.2 USD/m3, respectively. Even if the OC of the EC process was higher as compared to the CC process, the treated water obtained by EC meets the Tunisian Standards (NT 106.03 and NT 09-14) for textile wastewater discharge into the environment and demonstrates a high potential for its reuse in various industrial activities. EC technology can be integrated into a wastewater management system that ensures a zero liquid discharge of wastewater into the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...