Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(1): 319-328, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260566

RESUMO

Falls are an eminent risk for older adults and especially patients with neurodegenerative disorders, such as Parkinson's disease (PD). Recent advancements in wearable sensor technology and machine learning may provide a possibility for an individualized prediction of fall risk based on gait recordings from standardized gait tests or from unconstrained real-world scenarios. However, the most effective aggregation of continuous real-world data as well as the potential of unsupervised gait tests recorded over multiple days for fall risk prediction still need to be investigated. Therefore, we present a data set containing real-world gait and unsupervised 4x10-Meter-Walking-Tests of 40 PD patients, continuously recorded with foot-worn inertial sensors over a period of two weeks. In this prospective study, falls were self-reported during a three-month follow-up phase, serving as ground truth for fall risk prediction. The purpose of this study was to compare different data aggregation approaches and machine learning models for the prospective prediction of fall risk using gait parameters derived either from continuous real-world recordings or from unsupervised gait tests. The highest balanced accuracy of 74.0% (sensitivity: 60.0%, specificity: 88.0%) was achieved with a Random Forest Classifier applied to the real-world gait data when aggregating all walking bouts and days of each participant. Our findings suggest that fall risk can be predicted best by merging the entire two-week real-world gait data of a patient, outperforming the prediction using unsupervised gait tests (68.0% balanced accuracy) and contribute to an improved understanding of fall risk prediction.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Idoso , Estudos Prospectivos , Marcha , Caminhada
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 789-792, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018104

RESUMO

The analysis of gait data is one approach to support clinicians with the diagnosis and therapy of diseases, for example Parkinson's disease (PD). Traditionally, gait data of standardized tests in the clinic is analyzed, ensuring a predefined setting. In recent years, long-term home-based gait analysis has been used to acquire a more representative picture of the patient's disease status. Data is recorded in a less artificial setting and therefore allows a more realistic perception of the disease progression. However, fully unsupervised gait data without additional context information impedes interpretation. As an intermediate solution, performance of gait tests at home was introduced. Integration of instrumented gait test requires annotations of those tests for their identification and further processing. To overcome these limitations, we developed an algorithm for automatic detection of standardized gait tests from continuous sensor data with the goal of making manual annotations obsolete. The method is based on dynamic time warping, which compares an input signal with a predefined template and quantifies similarity between both. Different templates were compared and an optimized template was created. The classification scored a F1-measure of 86.7% for evaluation on a data set acquired in a clinical setting. We believe that this approach can be transferred to home-monitoring systems and will facilitate a more efficient and automated gait analysis.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Algoritmos , Marcha , Análise da Marcha , Humanos , Doença de Parkinson/diagnóstico
3.
IEEE J Biomed Health Inform ; 24(7): 1869-1878, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32086225

RESUMO

Mobile gait analysis using wearable inertial measurement units (IMUs) provides valuable insights for the assessment of movement impairments in different neurological and musculoskeletal diseases, for example Parkinson's disease (PD). The increase in data volume due to arising long-term monitoring requires valid, robust and efficient analysis pipelines. In many studies an upstream detection of gait is therefore applied. However, current methods do not provide a robust way to successfully reject non-gait signals. Therefore, we developed a novel algorithm for the detection of gait from continuous inertial data of sensors worn at the feet. The algorithm is focused not only on a high sensitivity but also a high specificity for gait. Sliding windows of IMU signals recorded from the feet of PD patients were processed in the frequency domain. Gait was detected if the frequency spectrum contained specific patterns of harmonic frequencies. The approach was trained and evaluated on 150 clinical measurements containing standardized gait and cyclic movement tests. The detection reached a sensitivity of 0.98 and a specificity of 0.96 for the best sensor configuration (angular rate around the medio-lateral axis). On an independent validation data set including 203 unsupervised, semi-standardized gait tests, the algorithm achieved a sensitivity of 0.97. Our algorithm for the detection of gait from continuous IMU signals works reliably and showed promising results for the application in the context of free-living and non-standardized monitoring scenarios.


Assuntos
Análise da Marcha/métodos , Dispositivos Eletrônicos Vestíveis , Acelerometria , Idoso , Algoritmos , Feminino , Análise de Fourier , Marcha/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Sensibilidade e Especificidade , Caminhada/fisiologia
4.
IEEE J Biomed Health Inform ; 24(5): 1490-1499, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31449035

RESUMO

Hereditary spastic paraplegias (HSP) represents a group of orphan neurodegenerative diseases with gait disturbance as the predominant clinical feature. Due to its rarity, research within this field is still limited. Aside from clinical analysis using established scales, gait analysis has been employed to enhance the understanding of the mechanisms behind the disease. However, state of the art gait analysis systems are often large, immobile and expensive. To overcome these limitations, this paper presents the first clinically relevant mobile gait analysis system for HSP patients. We propose an unsupervised model based on local cyclicity estimation and hierarchical hidden Markov models (LCE-hHMM). The system provides stride time, swing time, stance time, swing duration and cadence. These parameters are validated against a GAITRite system and manual sensor data labelling using a total of 24 patients within 2 separate studies. The proposed system achieves a stride time error of -0.00  ± 0.09 s (correlation coefficient, r = 1.00) and a swing duration error of -0.67  ± 3.27 % (correlation coefficient, r = 0.93) with respect to the GAITRite system. We show that these parameters are also correlated to the clinical spastic paraplegia rating scale (SPRS) in a similar manner to other state of the art gait analysis systems, as well as to supervised and general versions of the proposed model. Finally, we show a proof of concept for this system to be used to analyse alterations in the gait of individual patients. Thus, with further clinical studies, due to its automated approach and mobility, this system could be used to determine treatment effects in future clinical trials.


Assuntos
Análise da Marcha/métodos , Processamento de Sinais Assistido por Computador , Paraplegia Espástica Hereditária , Adulto , Algoritmos , Feminino , Marcha/fisiologia , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/fisiopatologia , Aprendizado de Máquina Supervisionado
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5430-5433, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441565

RESUMO

Gait analysis provides a quantitative method to assess disease progression or intervention effect on gait disorders. While mobile gait analysis enables continuous monitoring in free living conditions, state of the art gait analysis for diseases such as hereditary spastic paraplegia (HSP) is currently limited to motion capture systems which are large and expensive. The challenge with HSP is its heterogeneous nature and rarity, leading to a wide range of ages, severity and gait patterns as well as small patient numbers. We propose a sensor-based mobile solution, based on a personalised hierarchical hidden Markov Model (hHMM) to extract spatio-temporal gait parameters. This personalised hHMM achieves a mean absolute error of 0.04 s ± 0.03 s for stride time estimation with respect to a GAITRite® reference system. We use the successful extraction of initial ground contact to explore the limits of the double integration method for such heterogeneous diseases. While our personalised model compensates for the heterogeneity of the disease, it would require a new model per patient. We observed that the general model was sufficient for some of the less severely affected patients.


Assuntos
Análise da Marcha , Cadeias de Markov , Paraplegia Espástica Hereditária/diagnóstico , Progressão da Doença , Marcha , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...