Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37863671

RESUMO

Hookworm, a parasitic infection, retains a considerable burden of disease, affecting the most underprivileged segments of the general population in endemic countries and remains one of the leading causes of mild to severe anemia in Low and Middle Income Countries (LMICs), particularly in pregnancy and children under 5. Despite repeated large scale Preventive Chemotherapy (PC) interventions since more than 3 decades, there is broad consensus among scholars that elimination targets set in the newly launched NTD roadmap will require additional tools and interventions. Development of a vaccine could constitute a promising expansion of the existing arsenal against hookworm. Therefore, we have evaluated the biological and implementation feasibility of the vaccine development as well as the added value of such a novel tool. Based on pipeline landscaping and the current knowledge on key biological aspects of the pathogen and its interactions with the host, we found biological feasibility of development of a hookworm vaccine to be moderate. Also, our analysis on manufacturing and regulatory issues as well as potential uptake yielded moderate implementation feasibility. Modelling studies suggest a that introduction of a vaccine in parallel with ongoing integrated interventions (PC, WASH, shoe campaigns), could substantially reduce burden of disease in a cost - saving mode. Finally a set of actions are recommended that might impact positively the likelihood of timely development and introduction of a hookworm vaccine.

2.
Nat Commun ; 13(1): 1910, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393441

RESUMO

Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used to develop chassis for biotechnological applications. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vectors for therapeutic applications.


Assuntos
Contenção de Riscos Biológicos , Mycoplasma pneumoniae , Genômica , Mycoplasma pneumoniae/genética
3.
Microb Biotechnol ; 14(3): 1201-1211, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773097

RESUMO

Infection by Mycoplasma pneumoniae has been identified as a preceding factor of Guillain-Barré-Stohl syndrome. The Guillain-Barré-Stohl syndrome is triggered by an immune reaction against the major glycolipids and it has been postulated that M. pneumoniae infection triggers this syndrome due to bacterial production of galactocerebroside. Here, we present an extensive comparison of 224 genome sequences from 104 Mycoplasma species to characterize the genetic determinants of galactocerebroside biosynthesis. Hidden Markov models were used to analyse glycosil transferases, leading to identification of a functional protein domain, termed M2000535 that appears in about a third of the studied genomes. This domain appears to be associated with a potential UDP-glucose epimerase, which converts UDP-glucose into UDP-galactose, a main substrate for the biosynthesis of galactocerebroside. These findings clarify the pathogenic mechanisms underlining the triggering of Guillain-Barré-Stohl syndrome by M. pneumoniae infections.


Assuntos
Síndrome de Guillain-Barré , Pneumonia por Mycoplasma , Galactosilceramidas , Glicolipídeos , Humanos , Mycoplasma pneumoniae/genética
4.
NPJ Syst Biol Appl ; 6(1): 33, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097709

RESUMO

Mycoplasma pneumoniae is a slow-growing, human pathogen that causes atypical pneumonia. Because it lacks a cell wall, many antibiotics are ineffective. Due to its reduced genome and dearth of many biosynthetic pathways, this fastidious bacterium depends on rich, undefined medium for growth, which makes large-scale cultivation challenging and expensive. To understand factors limiting growth, we developed a genome-scale, constraint-based model of M. pneumoniae called iEG158_mpn to describe the metabolic potential of this bacterium. We have put special emphasis on cell membrane formation to identify key lipid components to maximize bacterial growth. We have used this knowledge to predict essential components validated with in vitro serum-free media able to sustain growth. Our findings also show that glycolysis and lipid metabolism are much less efficient under hypoxia; these findings suggest that factors other than metabolism and membrane formation alone affect the growth of M. pneumoniae. Altogether, our modelling approach allowed us to optimize medium composition, enabled growth in defined media and streamlined operational requirements, thereby providing the basis for stable, reproducible and less expensive production.


Assuntos
Meios de Cultura Livres de Soro , Modelos Biológicos , Mycoplasma pneumoniae/crescimento & desenvolvimento , Metabolismo Energético , Glicólise , Mycoplasma pneumoniae/metabolismo
5.
Stem Cell Res ; 32: 1-7, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30145492

RESUMO

With their capability to self-renew and differentiate into derivatives of all three germ layers, human pluripotent stem cells (hPSCs) offer a unique model to study aspects of human development in vitro. Directed differentiation towards mesendodermal lineages is a complex process, involving transition through a primitive streak (PS)-like stage. We have recently shown PS-like patterning from hPSCs into definitive endoderm, cardiac as well as presomitic mesoderm by only modulating the bulk cell density and the concentration of the GSK3 inhibitor CHIR99021, a potent activator of the WNT pathway. The patterning process is modulated by a complex paracrine network, whose identity and mechanistic consequences are poorly understood. To study the underlying dynamics, we here applied mathematical modeling based on ordinary differential equations. We compared time-course data of early hPSC differentiation to increasingly complex model structures with incremental numbers of paracrine factors. Model simulations suggest at least three paracrine factors being required to recapitulate the experimentally observed differentiation kinetics. Feedback mechanisms from both undifferentiated and differentiated cells turned out to be crucial. Evidence from double knock-down experiments and secreted protein enrichment allowed us to hypothesize on the identity of two of the three predicted factors. From a practical perspective, the mathematical model predicts optimal settings for directing lineage-specific differentiation. This opens new avenues for rational stem cell bioprocessing in more advanced culture systems, e.g. in perfusion-fed bioreactors enabling cell therapies.


Assuntos
Diferenciação Celular/fisiologia , Modelos Teóricos , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Piridinas/farmacologia , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...