Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomed Rep ; 20(3): 37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343660

RESUMO

Proteasome inhibitor bortezomib is an anticancer agent approved for treatment of multiple myeloma and mantle cell lymphoma. However, its application in other types of cancer, primarily in solid tumors, is limited due to poor pharmacokinetics, inefficient tissue penetration, low stability and frequent adverse effects. In the present study, a novel micellar nano-scaled delivery system was manufactured, composed of amphiphilic poly(N-vinylpyrrolidone) nanoparticles loaded with bortezomib. Similar nanoparticles loaded with prothionamide, a drug without anticancer effect, were used as control. The size and zeta potential of the obtained polymeric micelles were measured by dynamic light scattering. Bortezomib-loaded micelles exhibited significant cytotoxic activity in vitro in monolayer tumor cell cultures (IC50 ~6.5 µg/ml) and in 3D multicellular tumor spheroids (IC50 ~8.5 µg/ml) of human glioblastoma cell lines U87 and T98G. Additionally, the toxic effects in vivo were studied in zebrafish Danio rerio embryos, with an estimated 50% lethal concentration of 0.1 mg/ml. Considering that bortezomib and other molecules from the class of proteasome inhibitors are potent antitumor agents, nanodelivery approach can help reduce adverse effects and expand the range of its applications for treatment of various oncological diseases.

3.
Int J Biol Macromol ; 255: 128096, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972835

RESUMO

Destroying tumor vasculature is a relevant therapeutic strategy due to its involvement in tumor progression. However, adaptive resistance to approved antiangiogenic drugs targeting VEGF/VEGFR pathway requires the recruitment of additional targets. In this aspect, targeting TRAIL pathway is promising as it is an important component of the immune system involved in tumor immunosurveillance. For dual targeting of malignant cells and tumor vascular microenvironment, we designed a multivalent fusion protein SRH-DR5-B-iRGD with antiangiogenic VEGFR2-specific peptide SRH at the N-terminus and a tumor-targeting and -penetrating peptide iRGD at the C-terminus of receptor-selective TRAIL variant DR5-B. SRH-DR5-B-iRGD obtained high affinity for DR5, VEGFR2 and αvß3 integrin in nanomolar range. Fusion of DR5-B with effector peptides accelerated DR5 receptor internalization rate upon ligand binding. Antitumor efficacy was evaluated in vitro in human tumor cell lines and primary patient-derived glioblastoma neurospheres, and in vivo in xenograft mouse model of human glioblastoma. Multivalent binding of SRH-DR5-B-iRGD fusion efficiently stimulated DR5-mediated tumor cell death via caspase-dependent mechanism, suppressed xenograft tumor growth by >80 %, doubled the lifespan of xenograft animals, and inhibited tumor vascularization. Therefore, targeting DR5 and VEGFR2 molecular pathways with SRH-DR5-B-iRGD protein may provide a novel therapeutic approach for treatment of solid tumors.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Apoptose , Angiogênese , Linhagem Celular Tumoral , Peptídeos , Ensaios Antitumorais Modelo de Xenoenxerto , Microambiente Tumoral
4.
Pharmaceutics ; 15(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36839837

RESUMO

The TRAIL (TNF-related apoptosis-inducing ligand) apoptotic pathway is extensively exploited in the development of targeted antitumor therapy due to TRAIL specificity towards its cognate receptors, namely death receptors DR4 and DR5. Although therapies targeting the TRAIL pathway have encountered many obstacles in attempts at clinical implementation for cancer treatment, the unique features of the TRAIL signaling pathway continue to attract the attention of researchers. Special attention is paid to the design of novel nanoscaled delivery systems, primarily aimed at increasing the valency of the ligand for improved death receptor clustering that enhances apoptotic signaling. Optionally, complex nanoformulations can allow the encapsulation of several therapeutic molecules for a combined synergistic effect, for example, chemotherapeutic agents or photosensitizers. Scaffolds for the developed nanodelivery systems are fabricated by a wide range of conventional clinically approved materials and innovative ones, including metals, carbon, lipids, polymers, nanogels, protein nanocages, virus-based nanoparticles, dendrimers, DNA origami nanostructures, and their complex combinations. Most nanotherapeutics targeting the TRAIL pathway are aimed at tumor therapy and theranostics. However, given the wide spectrum of action of TRAIL due to its natural role in immune system homeostasis, other therapeutic areas are also involved, such as liver fibrosis, rheumatoid arthritis, Alzheimer's disease, and inflammatory diseases caused by bacterial infections. This review summarizes the recent innovative developments in the design of nanodelivery systems modified with TRAIL pathway-targeting ligands.

5.
Pharmaceutics ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276486

RESUMO

Curcumin attracts huge attention because of its biological properties: it is antiproliferative, antioxidant, anti-inflammatory, immunomodulatory and so on. However, its usage has been limited by poor water solubility and low bioavailability. Herein, to solve these problems, we developed curcumin-loaded nanoparticles based on end-capped amphiphilic poly(N-vinylpyrrolidone). Nanoparticles were obtained using the solvent evaporation method and were characterized by dynamic and electrophoretic light scattering, transmission electron (TEM) and atomic force (AFM) microscopy. The average particle size was 200 nm, and the ζ-potential was -4 mV. Curcumin-release studies showed that nanoparticles are stable in aqueous solutions. An in vitro release study showed prolonged action in gastric, intestinal and colonic fluids, consistently, and in PBS. In vitro studies on epidermoid carcinoma and human embryonic kidney cells showed that the cells absorbed more curcumin in nanoparticles compared to free curcumin. Nanoparticles are safe for healthy cells and show high cytotoxicity for glioblastoma cells in cytotoxicity studies in vitro. The median lethal dose was determined in an acute toxicity assay on zebrafish and was 23 µM. Overall, the curcumin-loaded nanoparticles seem promising for cancer treatment.

6.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555190

RESUMO

ONC201, the anticancer drug, targets and activates mitochondrial ATP-dependent caseinolytic peptidase P (ClpP), a serine protease located in the mitochondrial matrix. Given the promise of ONC201 in cancer treatment, we evaluated its effects on the breast ductal carcinoma cell line (BT474). We showed that the transient single-dose treatment of BT474 cells by 10 µM ONC201 for a period of less than 48 h induced a reversible growth arrest and a transient activation of an integrated stress response indicated by an increased expression of CHOP, ATF4, and GDF-15, and a reduced number of mtDNA nucleoids. A prolonged exposure to the drug (>48 h), however, initiated an irreversible loss of mtDNA, persistent activation of integrated stress response proteins, as well as cell cycle arrest, inhibition of proliferation, and suppression of the intrinsic apoptosis pathway. Since Natural Killer (NK) cells are quickly gaining momentum in cellular anti-cancer therapies, we evaluated the effect of ONC201 on the activity of the peripheral blood derived NK cells. We showed that following the ONC 201 exposure BT474 cells demonstrated enhanced sensitivity toward human NK cells that mediated killing. Together our data revealed that the effects of a single dose of ONC201 are dependent on the duration of exposure, specifically, while short-term exposure led to reversible changes; long-term exposure resulted in irreversible transformation of cells associated with the senescent phenotype. Our data further demonstrated that when used in combination with NK cells, ONC201 created a synergistic anti-cancer effect, thus suggesting its possible benefit in NK-cell based cellular immunotherapies for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Mitocôndrias , DNA Mitocondrial
7.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293545

RESUMO

TRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues. The obtained bispecific fusion protein DR5-B-iRGD exhibited dual affinity for DR5 and integrin αvß3 receptors. DR5-B-iRGD penetrated into U-87 tumor spheroids faster than DR5-B and demonstrated an enhanced antitumor effect in human glioblastoma cell lines T98G and U-87, as well as in primary patient-derived glioblastoma neurospheres in vitro. Additionally, DR5-B-iRGD was highly effective in a xenograft mouse model of the U-87 human glioblastoma cell line in vivo. We suggest that DR5-B-iRGD may become a promising candidate for targeted therapy for glioblastoma.


Assuntos
Glioblastoma , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Camundongos , Animais , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Integrina alfaVbeta3/genética , Linhagem Celular Tumoral , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose
8.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682540

RESUMO

In the last two decades, bifunctional proteins have been created by genetic and protein engineering methods to increase therapeutic effects in various diseases, including cancer. Unlike conventional small molecule or monotargeted drugs, bifunctional proteins have increased biological activity while maintaining low systemic toxicity. The recombinant anti-cancer cytokine TRAIL has shown a limited therapeutic effect in clinical trials. To enhance the efficacy of TRAIL, we designed the HRH-DR5-B fusion protein based on the DR5-selective mutant variant of TRAIL fused to the anti-angiogenic synthetic peptide HRHTKQRHTALH. Initially low expression of HRH-DR5-B was enhanced by the substitution of E. coli-optimized codons with AT-rich codons in the DNA sequence encoding the first 7 amino acid residues of the HRH peptide. However, the HRH-DR5-B degraded during purification to form two adjacent protein bands on the SDS-PAGE gel. The replacement of His by Ser at position P2 immediately after the initiator Met dramatically minimized degradation, allowing more than 20 mg of protein to be obtained from 200 mL of cell culture. The resulting SRH-DR5-B fusion bound the VEGFR2 and DR5 receptors with high affinity and showed increased cytotoxic activity in 3D multicellular tumor spheroids. SRH-DR5-B can be considered as a promising candidate for therapeutic applications.


Assuntos
Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
9.
Front Cell Dev Biol ; 9: 733688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660590

RESUMO

Tumor necrosis factor-associated ligand inducing apoptosis (TRAIL) induces apoptosis through the death receptors (DRs) 4 and 5 expressed on the cell surface. Upon ligand stimulation, death receptors are rapidly internalized through clathrin-dependent and -independent mechanisms. However, there have been conflicting data on the role of death receptor endocytosis in apoptotic TRAIL signaling and possible cell type-specific differences in TRAIL signaling have been proposed. Here we have compared the kinetics of TRAIL-mediated internalization and subsequent recycling of DR4 and DR5 in resistant (HT-29 and A549) and sensitive (HCT116 and Jurkat) tumor cell lines of various origin. TRAIL stimulated the internalization of both receptors in a concentration-dependent manner with similar kinetics in sensitive and resistant cell lines without affecting the steady-state expression of DR4 and DR5 in cell lysates. Using the receptor-selective TRAIL variant DR5-B, we have shown that DR5 is internalized independently of DR4 receptor. After internalization and elimination of TRAIL from culture medium, the receptors slowly return to the plasma membrane. Within 4 h in resistant or 6 h in sensitive cells, the surface expression of receptors was completely restored. Recovery of receptors occurred both from newly synthesized molecules or from trans-Golgi network, as cycloheximide and brefeldin A inhibited this process. These agents also suppressed the expression of cell surface receptors in a time- and concentration-dependent manner, indicating that DRs undergo constitutive endocytosis. Inhibition of receptor endocytosis by sucrose led to sensitization of resistant cells to TRAIL and to an increase in its cytotoxic activity against sensitive cells. Our results confirm the universal nature of TRAIL-induced death receptor endocytosis, thus cell sensitivity to TRAIL can be associated with post-endocytic events.

11.
Cancers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365976

RESUMO

TRAIL is considered a promising antitumor agent because it causes apoptosis of transformed cells without affecting normal cells. However, many types of tumors are cytokine resistant, and combination therapy with various chemotherapeutic drugs is being developed to overcome the resistance. We have demonstrated that the combination of TRAIL with doxorubicin, bortezomib, and panobinostat dramatically reduced the viability of TRAIL-resistant A549 and HT-29 cells. Chemotherapy even more efficiently sensitized cells to the DR5-specific mutant variant of TRAIL DR5-B, which does not have an affinity for decoy receptors. Bortezomib and doxorubicin greatly enhanced the surface expression of the death receptors DR5 and DR4, while panobinostat increased expression of DR5 and suppressed expression of DR4 in both cell lines. All drugs increased surface expression of the decoy receptors DcR1 and DcR2. Unlike the combined treatment, if the cells were pretreated with chemotherapy for 24 h, the cytotoxic activity of TRAIL was less pronounced, while sequential treatment of cells enhanced the effectiveness of DR5-B. The same results were obtained with agonistic anti-DR5 antibodies. Thus, the effectiveness of TRAIL was rather limited due to changes in the ratio of death and decoy receptors and DR5-specific agonists may be preferred in combination antitumor therapy regimens.

12.
Transl Oncol ; 13(4): 100762, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32224450

RESUMO

Despite the weak clinical efficacy of TRAIL death receptor agonists, a search is under way for new agents that more efficiently activate apoptotic signaling. We previously created a TRAIL DR5-selective variant DR5-B without affinity for the DR4, DcR1, DcR2, and OPG receptors and increased proapoptotic activity in tumor cells. Here we showed that DR5-B significantly inhibited tumor growth in HCT116 and Caco-2 but not in HT-29 xenografts. The antitumor activity of DR5-B was 2.5 times higher in HCT116 xenografts compared to TRAIL. DR5-B at a dose of 2 or 10 mg/kg/d for 10 days inhibited tumor growth in HCT116 xenografts by 26% or 50% respectively, and increased animal survival. Unexpectedly, DR5-B at a higher dose (25 mg/kg/d) inhibited tumor growth only during the first 8 days of drug exposure, while at the end of the monitoring, no effect or even slight stimulation of tumor growth was observed. The pharmacokinetic parameters of DR5-B were comparable to those of TRAIL, except that the half-life was 3.5 times higher. Thus, enhancing TRAIL selectivity to DR5 may increase both antitumor and proliferative activities depending on the concentration and administration regimens.

13.
Mol Biotechnol ; 57(2): 160-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25370824

RESUMO

Mature transforming growth factor beta1 (TGF-ß1) is a homodimeric protein with a single disulfide bridge between Cys77 on the respective monomers. The synthetic DNA sequence encoding the mature human TGF-ß1/C77S (further termed TGF-ß1m) was cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin (Trx) immediately after the DNA sequence encoding enteropeptidase recognition site. High-level expression (~1.5 g l(-1)) of Trx/TGF-ß1m fusion was achieved in Escherichia coli BL21(DE3) strain mainly in insoluble form. The fusion was solubilized and refolded in glutathione redox system in the presence of zwitterionic detergent CHAPS. After refolding, Trx/TGF-ß1m fusion was cleaved by enteropeptidase, and the carrier protein of TGF-ß1m was separated from thioredoxin on Ni-NTA agarose. Separation of monomeric molecules from the noncovalently bounded oligomers was done using cation-exchange chromatography. The structure of purified TGF-ß1m was confirmed by circular dichroism analysis. The developed technology allowed purifying biologically active tag-free monomeric TGF-ß1m from bacteria with a yield of about 2.8 mg from 100 ml cell culture. The low-cost and easy purification steps allow considering that our proposed preparation of recombinant monomeric TGF-ß1 could be employed for in vitro and in vivo experiments as well as for therapeutic intervention.


Assuntos
Proteínas Recombinantes de Fusão/biossíntese , Tiorredoxinas/genética , Fator de Crescimento Transformador beta1/biossíntese , Clonagem Molecular , Escherichia coli , Expressão Gênica , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Tiorredoxinas/biossíntese , Tiorredoxinas/isolamento & purificação , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/isolamento & purificação
14.
PLoS One ; 9(10): e109756, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310712

RESUMO

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) mediates apoptosis in cancer cells through death receptors DR4 and DR5 preferring often one receptor over another in the cells expressing both receptors. Receptor selective mutant variants of TRAIL and agonistic antibodies against DR4 and DR5 are highly promising anticancer agents. Here using DR5 specific mutant variant of TRAIL--DR5-B we have demonstrated for the first time that the sensitivity of cancer cells can be shifted from one TRAIL death receptor to another during co-treatment with anticancer drugs. First we have studied the contribution of DR4 and DR5 in HCT116 p53+/+ and HCT116 p53-/- cells and demonstrated that in HCT116 p53+/+ cells the both death receptors are involved in TRAIL-induced cell death while in HCT116 p53-/- cells prevailed DR4 signaling. The expression of death (DR4 and DR5) as well as decoy (DcR1 and DcR2) receptors was upregulated in the both cell lines either by TRAIL or by bortezomib. However, combined treatment of cells with two drugs induced strong time-dependent and p53-independent internalization and further lysosomal degradation of DR4 receptor. Interestingly DR5-B variant of TRAIL which do not bind with DR4 receptor also induced elimination of DR4 from cell surface in combination with bortezomib indicating the ligand-independent mechanism of the receptor internalization. Eliminatory internalization of DR4 resulted in activation of DR5 receptor thus DR4-dependent HCT116 p53-/- cells became highly sensitive to DR5-B in time-dependent manner. Internalization and degradation of DR4 receptor depended on activation of caspases as well as of lysosomal activity as it was completely inhibited by Z-VAD-FMK, E-64 and Baf-A1. In light of our findings, it is important to explore carefully which of the death receptors is active, when sensitizing drugs are combined with agonistic antibodies to the death receptors or receptor selective variants of TRAIL to enhance cancer treatment efficiency.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Endocitose/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Pirazinas/farmacologia , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Bortezomib , Extratos Celulares , Sinergismo Farmacológico , Células HCT116 , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Fatores de Tempo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
15.
Biochimie ; 95(11): 2076-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23917033

RESUMO

Enteropeptidase (EC 3.4.21.9) plays a key role in mammalian digestion as the enzyme that physiologically activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the recognition sequence D4K. The high specificity of enteropeptidase makes it a powerful tool in modern biotechnology. Here we describe the application of phage display technology to express active human enteropeptidase catalytic subunits (L-HEP) on M13 filamentous bacteriophage. The L-HEP/C122S gene was cloned in the g3p-based phagemid vector pHEN2m upstream of the sequence encoding the phage g3p protein and downstream of the signal peptide-encoding sequence. Heterogeneous catalysis of the synthetic peptide substrate (GDDDDK-ß-naphthylamide) cleavage by phage-bound L-HEP was shown to have kinetic parameters similar to those of soluble enzyme, with the respective Km values of 19 µM and 20 µM and kcat of 115 and 92 s(-1). Fusion proteins containing a D4K cleavage site were cleaved with phage-bound L-HEP/C122S as well as by soluble L-HEP/C122S, and proteolysis was inhibited by soybean trypsin inhibitor. Rapid large-scale phage production, one-step purification of phage-bound L-HEP, and easy removal of enzyme activity from reaction samples by PEG precipitation make our approach suitable for the efficient removal of various tag sequences fused to the target proteins. The functional phage display technology developed in this study can be instrumental in constructing libraries of mutants to analyze the effect of structural changes on the activity and specificity of the enzyme or generate its desired variants for biotechnological applications.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Enteropeptidase/química , Proteínas Recombinantes de Fusão/química , Bacteriófagos/genética , Catálise , Domínio Catalítico/genética , Clonagem Molecular , Enteropeptidase/genética , Enteropeptidase/metabolismo , Vetores Genéticos , Humanos , Cinética , Mutação , Naftalenos/farmacologia , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato
16.
J Biomol Struct Dyn ; 30(1): 62-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22571433

RESUMO

Enteropeptidase is a key enzyme in the digestion system of higher animals. It initiates enzymatic cascade cleaving trypsinogen activation peptide after a unique sequence DDDDK. Recently, we have found specific activity of human enteropeptidase catalytic subunit (L-HEP) being significantly higher than that of its bovine ortholog (L-BEP). Moreover, we have discovered that L-HEP hydrolyzed several nonspecific peptidic substrates. In this work, we aimed to further characterize species-specific enteropeptidase activities and to reveal their structural basis. First, we compared hydrolysis of peptides and proteins lacking DDDDK sequence by L-HEP and L-BEP. In each case human enzyme was more efficient, with the highest hydrolysis rate observed for substrates with a large hydrophobic residue in P2-position. Computer modeling suggested enzyme exosite residues 96 (Arg in L-HEP, Lys in L-BEP) and 219 (Lys in L-HEP, Gln in L-BEP) to be responsible for these differences in enteropeptidase catalytic activity. Indeed, human-to-bovine mutations Arg96Lys, Lys219Gln shifted catalytic properties of L-HEP toward those of L-BEP. This effect was amplified in case of the double mutation Arg96Lys/Lys219Gln, but still did not cover the full difference in catalytic activities of human and bovine enzymes. To find a missing link, we studied monopeptide benzyl-arginine-ß-naphthylamide hydrolysis. L-HEP catalyzed it with an order lower K (m) than L-BEP, suggesting the monopeptide-binding S1 site input into catalytic distinction between two enteropeptidase species. Together, our findings suggest structural basis of the unique catalytic properties of human enteropeptidase and instigate further studies of its tentative physiological and pathological roles.


Assuntos
Domínio Catalítico , Enteropeptidase/química , Enteropeptidase/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Hidrólise , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato
17.
Protein Expr Purif ; 79(2): 191-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21515380

RESUMO

Enteropeptidase (synonym: enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. It has also great biotechnological interest because of the unique substrate specificity of the serine protease domain. The high degree of specificity exhibited by enteropeptidase makes it a suitable reagent for cleaving recombinant proteins to remove affinity or other tags. However often unwanted cleavages elsewhere in the protein occurred during cleavage of fusions when high amount of enzyme is required. In this study we have improved the efficiency of fusion proteins cleavage by enteropeptidase by substitution of the Lys residue by Arg in specific cleavage sequence (Asp)(4)-Lys. We have demonstrated that 3-6-fold lower amounts of the catalytic subunit of human and bovine enteropeptidase is required for 95% cleavage of Trx/TRAIL and Trx/FGF-2 fusions with (Asp)(4)-Arg cleavage sequence in comparison to native sequence (Asp)(4)-Lys. As a result, reduced amount of non-specifically cleaved peptide fragments were observed during cleavage of (Asp)(4)-Lys/Arg mutated fusions. These findings overcome limitations of enteropeptidase in tag removal processes during recombinant proteins purification and extend its commercial benefit in the biopharmaceutical industry.


Assuntos
Arginina/química , Enteropeptidase/metabolismo , Lisina/química , Oligopeptídeos/química , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem/métodos , Animais , Arginina/metabolismo , Domínio Catalítico/genética , Bovinos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Enteropeptidase/genética , Escherichia coli , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Cinética , Lisina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Plasmídeos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Transformação Bacteriana , Tripsinogênio/metabolismo
18.
J Biotechnol ; 148(2-3): 113-8, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20451568

RESUMO

TGFbeta signaling is initiated by binding of growth factor ligand to two related single-pass transmembrane receptor serine/threonine kinases, known as the TGFbeta type I (TbetaRI) and type II (TbetaRII-ED) receptors. TbetaRII-ED is essential for all TGFbeta-induced signals. The DNA sequence encoding the extracellular domain of human TbetaRII-ED (TbetaRII-ED, residues 4-136) was synthesized from 20 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. High level expression ( approximately 1 gL(-1)) of thioredoxin/TbetaRII-ED fusion was achieved in Escherichia coli BL21(DE3) strain mainly in soluble form. The soluble thioredoxin/TbetaRII-ED fusion has been purified and refolded on Ni-NTA agarose. After cleavage of purified thioredoxin/TbetaRII-ED fusion by recombinant human enteropeptidase light chain (L-HEP) the target protein of TbetaRII-ED was separated from thioredoxin on Ni-NTA agarose. Fourteen milligrams of highly purified TbetaRII-ED without N- or C-terminal tags was yielded from 100mL cell culture. The purified preparation of TbetaRII-ED was highly homogenous, as shown by SDS-PAGE with silver staining, HPLC and mass spectroscopy analysis. The binding of TbetaRII-ED purified from E. coli to TGFbeta1 was shown to be comparable to commercial material purified from NSO cells. Recombinant TbetaRII-ED could be employed as an antagonist of TGFbeta1 and TGFbeta3 in vitro and in vivo as well as for therapy of fibrotic disorders and some types of cancer.


Assuntos
Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Sítios de Ligação , Cromatografia de Afinidade , Ensaio de Imunoadsorção Enzimática , Escherichia coli/química , Escherichia coli/genética , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Estrutura Terciária de Proteína , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/química , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
Apoptosis ; 14(6): 778-87, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19412666

RESUMO

TRAIL (tumor necrosis factor (TNF) related apoptosis-inducing ligand) has been introduced as an extrinsic pathway inducer of apoptosis that does not have the toxicities of Fas and TNF. However, the therapeutic potential of TRAIL is limited because of many primary tumor cells are resistant to TRAIL. Despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity and efficiency. A major reason likely lies in the complexity of the interaction of TRAIL with its five receptors, of which only two DR4 and DR5 are death receptors. Binding of TRAIL with decoy receptors DcR1 and DcR2 or soluble receptor osteoprotegerin (OPG) fail to induce apoptosis. Here we describe design and expression in Escherichia coli of DR5-selective TRAIL variants DR5-A and DR5-B. The measurements of dissociation constants of these mutants with all five receptors show that they practically do not interact with DR4 and DcR1 and have highly reduced affinity to DcR2 and OPG receptors. These mutants are more effective than wild type TRAIL in induction of apoptosis in different cancer cell lines. In combination with the drugs targeted to cytoskeleton (taxol, cytochalasin D) the mutants of TRAIL induced apoptosis in resistant Hela cells overexpressing Bcl-2. The novel highly selective and effective DR5-A and DR5-B TRAIL variants will be useful in studies on the role of different receptors in TRAIL-induced apoptosis in sensitive and resistant cell lines.


Assuntos
Proteínas Mutantes/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Substituição de Aminoácidos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citocalasina D/farmacologia , Humanos , Cinética , Mutação/genética , Paclitaxel/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ressonância de Plasmônio de Superfície , Ultracentrifugação
20.
Biotechnol Lett ; 29(10): 1567-73, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17609857

RESUMO

The human TRAIL gene (encoding residues 114-281) was synthesized by PCR and cloned into plasmid pET-32a. High level expression (1.5 g l(-1)) of thioredoxin/TRAIL fusion was achieved in Escherichia coli strain BL21(DE3), mainly as inclusion bodies. Refolded fusion thioredoxin/TRAIL was cleaved by enteropeptidase and TRAIL was separated from thioredoxin on Ni-NTA agarose. High yield (400 mg l(-1)) of TRAIL without N-terminal methionine and His tag was obtained. Sedimentation coefficient demonstrated that 98% of TRAIL formed trimers. TRAIL formed crystals of space group P3 (1) with unit-cell dimensions a = b = 72.5 A, c = 141.5 A. Apoptosis induced in HeLa cells by purified TRAIL was 5-fold enhanced by emetine.


Assuntos
Enteropeptidase/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Tiorredoxinas/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Cristalografia , Escherichia coli/genética , Células HeLa , Humanos , Reação em Cadeia da Polimerase , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/isolamento & purificação , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...