Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Bioengineering (Basel) ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36829728

RESUMO

Estimation of the force exerted by muscles from their electromyographic (EMG) activity may be useful to control robotic devices. Approximating end-point forces as a linear combination of the activities of multiple muscles acting on a limb may lead to an inaccurate estimation because of the dependency between the EMG signals, i.e., multi-collinearity. This study compared the EMG-to-force mapping estimation performed with standard multiple linear regression and with three other algorithms designed to reduce different sources of the detrimental effects of multi-collinearity: Ridge Regression, which performs an L2 regularization through a penalty term; linear regression with constraints from foreknown anatomical boundaries, derived from a musculoskeletal model; linear regression of a reduced number of muscular degrees of freedom through the identification of muscle synergies. Two datasets, both collected during the exertion of submaximal isometric forces along multiple directions with the upper limb, were exploited. One included data collected across five sessions and the other during the simultaneous exertion of force and generation of different levels of co-contraction. The accuracy and consistency of the EMG-to-force mappings were assessed to determine the strengths and drawbacks of each algorithm. When applied to multiple sessions, Ridge Regression achieved higher accuracy (R2 = 0.70) but estimations based on muscle synergies were more consistent (differences between the pulling vectors of mappings extracted from different sessions: 67%). In contrast, the implementation of anatomical constraints was the best solution, both in terms of consistency (R2 = 0.64) and accuracy (74%), in the case of different co-contraction conditions. These results may be used for the selection of the mapping between EMG and force to be implemented in myoelectrically controlled robotic devices.

2.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679467

RESUMO

In recent years, different groups have developed algorithms to control the stiffness of a robotic device through the electromyographic activity collected from a human operator. However, the approaches proposed so far require an initial calibration, have a complex subject-specific muscle model, or consider the activity of only a few pairs of antagonist muscles. This study described and tested an approach based on a biomechanical model to estimate the limb stiffness of a multi-joint, multi-muscle system from muscle activations. The "virtual stiffness" method approximates the generated stiffness as the stiffness due to the component of the muscle-activation vector that does not generate any endpoint force. Such a component is calculated by projecting the vector of muscle activations, estimated from the electromyographic signals, onto the null space of the linear mapping of muscle activations onto the endpoint force. The proposed method was tested by using an upper-limb model made of two joints and six Hill-type muscles and data collected during an isometric force-generation task performed with the upper limb. The null-space projection of the muscle-activation vector approximated the major axis of the stiffness ellipse or ellipsoid. The model provides a good approximation of the voluntary stiffening performed by participants that could be directly implemented in wearable myoelectric controlled devices that estimate, in real-time, the endpoint forces, or endpoint movement, from the mapping between muscle activation and force, without any additional calibrations.


Assuntos
Músculo Esquelético , Extremidade Superior , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia , Movimento/fisiologia , Algoritmos , Fenômenos Biomecânicos , Eletromiografia
3.
Proc Inst Mech Eng H ; 237(1): 61-73, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377588

RESUMO

The increasing average age emphasizes the importance of gait analysis in elderly populations. Inertial Measurement Units (IMUs) represent a suitable wearable technology for the characterization of gait by estimating spatio-temporal parameters (STPs). However, the location of inertial sensors on the human body and the associated algorithms for the estimation of gait STPs play a fundamental role and are still open challenges. Accordingly, the aim of this work was to compare three IMUs set-ups (trunk, shanks, and ankles) and correspondent algorithms to a gold standard optoelectronic system for the estimation of gait STPs in a healthy elderly population. In total, 14 healthy elderly subjects walked barefoot at three different speeds. Gait parameters were assessed for each IMUs set-up and compared to those estimated with the gold standard. A statistical analysis based on Pearson correlation, Root Mean Square Error and Bland Altman plots was conducted to evaluate the accuracy of IMUs. Even though all tested set-ups produced accurate results, the IMU on the trunk performed better in terms of correlation (R ≥ 0.8), RMSE (0.01-0.06 s for temporal parameters, 0.03-0.04 for the limp index), and level of agreement (-0.01 s ≤ mean error ≤ 0.01 s, -0.02 s ≤ standard deviation error ≤ 0.02 s), also allowing simpler preparation of subjects and minor encumbrance during gait. From the promising results, a similar experiment might be conducted in pathological populations in the attempt to verify the accuracy of IMUs set-ups and algorithms also in non-physiological patterns.


Assuntos
Marcha , Caminhada , Humanos , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Análise da Marcha , Tornozelo , Algoritmos
4.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455998

RESUMO

Neurons are highly polarized cells requiring precise regulation of trafficking and targeting of membrane proteins to generate and maintain different and specialized compartments, such as axons and dendrites. Disruption of the Golgi apparatus (GA) secretory pathway in developing neurons alters axon/dendritic formation. Therefore, detailed knowledge of the mechanisms underlying vesicles exiting from the GA is crucial for understanding neuronal polarity. In this study, we analyzed the role of Brefeldin A-Ribosylated Substrate (CtBP1-S/BARS), a member of the C-terminal-binding protein family, in the regulation of neuronal morphological polarization and the exit of membrane proteins from the Trans Golgi Network. Here, we show that BARS is expressed during neuronal development in vitro and that RNAi suppression of BARS inhibits axonal and dendritic elongation in hippocampal neuronal cultures as well as largely perturbed neuronal migration and multipolar-to-bipolar transition during cortical development in situ. In addition, using plasma membrane (PM) proteins fused to GFP and engineered with reversible aggregation domains, we observed that expression of fission dominant-negative BARS delays the exit of dendritic and axonal membrane protein-containing carriers from the GA. Taken together, these data provide the first set of evidence suggesting a role for BARS in neuronal development by regulating post-Golgi membrane trafficking.


Assuntos
Complexo de Golgi , Neurônios , Axônios/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Rede trans-Golgi/metabolismo
6.
Proc Inst Mech Eng H ; 234(10): 1094-1105, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32633209

RESUMO

The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt-twist method was adopted to evaluate flexion-extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context.


Assuntos
Marcha , Coluna Vertebral , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Postura , Amplitude de Movimento Articular , Rotação
7.
Proc Inst Mech Eng H ; 234(7): 686-696, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32292102

RESUMO

Judo is a combat sport that involves throwing the opponent onto the back. When being thrown, head biomechanics may be related to head injury risk. This study aimed to assess head injury risks associated with four Judo techniques in children and adolescents with different experience levels. Twenty children (<12 years) and 20 adolescents (≥ 12 years) judoka were recruited. Each group was divided into non-expert and expert. Two inertial sensors were fixed on fallers' head and torso. Two backward (o-soto-gari and o-uchi-gari) and two forward (ippon-seoi-nage and tai-otoshi) techniques were performed. Peak of linear and angular head acceleration magnitude, impact time duration, neck angle, and the Gadd Severity Index were assessed. Children did not show differences between techniques or experience levels. In contrast, adolescents showed greater linear acceleration peak in o-soto-gari than tai-otoshi (p = 0.03), greater angular acceleration peak in o-soto-gari and o-uchi-gari than ippon-seoi-nage (p < 0.05), and greater neck flexion in o-uchi-gari than ippon-seoi-nage (p = 0.004). Compared to expert adolescents, non-expert adolescents showed greater angular acceleration peak, impact duration, and the Gadd Severity Index in o-soto-gari (p < 0.05) and greater neck extension in o-uchi-gari (p = 0.02). Current results pointed out higher risks for adolescents judoka while being thrown with backward techniques, especially for non-expert participants. This study highlights the need of training athletes in controlling head and neck during back falls from a young age to become expert judoka in adulthood.


Assuntos
Atletas , Artes Marciais/lesões , Adolescente , Fenômenos Biomecânicos , Criança , Traumatismos Craniocerebrais/epidemiologia , Traumatismos Craniocerebrais/prevenção & controle , Feminino , Humanos , Masculino , Artes Marciais/fisiologia , Medição de Risco/métodos , Ferimentos e Lesões/prevenção & controle
8.
Eur J Appl Physiol ; 120(4): 853-860, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076830

RESUMO

PURPOSE: Different motor units (MUs) in the biceps brachii (BB) muscle have been shown to be preferentially recruited during either elbow flexion or supination. Whether these different units reside within different regions is an open issue. In this study, we tested wheter MUs recruited during submaximal isometric tasks of elbow flexion and supination for two contraction levels and with the wrist fixed at two different angles are spatially localized in different BB portions. METHODS: The MUs' firing instants were extracted by decomposing high-density surface electromyograms (EMG), detected from the BB muscle of 12 subjects with a grid of electrodes (4 rows along the BB longitudinal axis, 16 columns medio-laterally). The firing instants were then used to trigger and average single-differential EMGs. The average rectified value was computed separately for each signal and the maximal value along each column in the grid was retained. The center of mass, defined as the weighted mean of the maximal, average rectified value across columns, was then consdiered to assess the medio-lateral changes in the MU surface representation between conditions. RESULTS: Contraction level, but neither wrist position nor force direction (flexion vs. supination), affected the spatial distribution of BB MUs. In particular, higher forces were associated with the recruitment of BB MUs whose action potentials were represented more medially. CONCLUSION: Although the action potentials of BB MUs were represented locally across the muscle medio-lateral region, dicrimination between elbow flexion or supination seems unlikely from the surface representation of MUs action potentials.


Assuntos
Potenciais de Ação , Contração Muscular , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico , Supinação/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
9.
J Neural Eng ; 17(1): 016058, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31958778

RESUMO

OBJECTIVE: In the last decades, many EMG-controlled robotic devices were developed. Since stiffness control may be required to perform skillful interactions, different groups developed devices whose stiffness is real-time controlled based on EMG signal samples collected from the operator. However, this control strategy may be fatiguing. In this study, we proposed and experimentally validated a novel stiffness control strategy, based on the average muscle co-contraction estimated from EMG samples collected in the previous 1 or 2 s. APPROACH: Nine subjects performed a tracking task with their right wrist in five different sessions. In four sessions a haptic device (Hi-5) applied a sinusoidal perturbing torque. In Baseline session, co-contraction reduced the effect of the perturbation only by stiffening the wrist. In contrast, during aided sessions the perturbation amplitude was also reduced (mimicking the effect of additional stiffening provided by EMG-driven robotic device) either proportionally to the co-contraction exerted by the subject sample-by-sample (Proportional), or according to the average co-contraction exerted in the previous 1 s (Integral 1s), or 2 s (Integral 2s). Task error, metabolic cost during the tracking task, perceived fatigue, and the median EMG frequency calculated during a sub-maximal isometric torque generation tasks that alternated with the tracking were compared across sessions. MAIN RESULTS: Positive effects of the reduction of the perturbation provided by co-contraction estimation was identified in all the investigated variables. Integral 1s session showed lower metabolic cost with respect to the Proportional session, and lower perceived fatigue with respect to both the Proportional and the Integral 2s sessions. SIGNIFICANCE: This study's results showed that controlling the stiffness of an EMG-driven robotic device proportionally to the operator's co-contraction, averaged in the previous 1 s, represents the best control strategy because it required less metabolic cost and led to a lower perceived fatigue.


Assuntos
Eletromiografia/métodos , Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Amplitude de Movimento Articular/fisiologia , Robótica/métodos , Punho/fisiologia , Adulto , Exoesqueleto Energizado , Feminino , Humanos , Masculino , Robótica/instrumentação , Adulto Jovem
10.
Acta Bioeng Biomech ; 21(3): 3-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798016

RESUMO

PURPOSE: Quantitative performance analysis is of great importance, especially to increase personalized training and to reduce injuries. The use of inertial sensors has given many possibilities and has been largely used in analysing technical capabilities of athletes. With respect to combat sports, judo has many issues resulting from the great number of variables involved in the techniques and due to the critical measurement environment. The aim of this study was to propose a method for measuring and quantifying motor abilities objectively. METHODS: Four inertial sensors were fixed to the lower limbs and one on the sternum of five male and five female elite judo athletes. Accelerations and angular velocities of the lower limbs were measured in 480 judo techniques. Regression lines of accelerations and angular velocities have been analysed to obtain 5 single technique indices and 1 overall technique index representing the motor abilities connected, respectively to force expressions and coordination capabilities. RESULTS: Correlations of motor abilities (force expression and coordination capabilities) and athletes' weight and height were found in only 6.7% of pairs. Results of force expression and coordination capabilities for most of the athletes are in line with their level of technical and combat experience. CONCLUSIONS: This method allowed to "photograph" athlete's technical level and to compare it in time through subsequent trials. With this innovative way, motor abilities could become evaluable and measurable, highlighting the importance of their objective quantification in order to evaluate effectiveness and efficiency of the sport technique.


Assuntos
Artes Marciais/fisiologia , Atividade Motora/fisiologia , Aceleração , Adulto , Atletas , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Análise de Regressão , Adulto Jovem
11.
Sensors (Basel) ; 19(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569372

RESUMO

Overweight/obesity is a physical condition that affects daily activities, including walking. The main purpose of this study was to identify if there is a relationship between body mass index (BMI) and gait characteristics in young adults. 12 normal weight (NW) and 10 overweight/obese (OW) individuals walked at a self-selected speed along a 14 m indoor path. H-Gait system, combining seven inertial sensors (fixed on pelvis and lower limbs), was used to record gait data. Walking speed, spatio-temporal parameters and joint kinematics in 3D were analyzed. Differences between NW and OW and correlations between BMI and gait parameters were evaluated. Conventional spatio-temporal parameters did not show statistical differences between the two groups or correlations with the BMI. However, significant results were pointed out for the joint kinematics. OW showed greater hip joint angles in frontal and transverse planes, with respect to NW. In the transverse plane, OW showed a greater knee opening angle and a shorter length of knee and ankle trajectories. Correlations were found between BMI and kinematic parameters in the frontal and transverse planes. Despite some phenomena such as soft tissue artifact and kinematics cross-talk, which have to be more deeply assessed, current results show a relationship between BMI and gait characteristics in young adults that should be looked at in osteoarthritis prevention.


Assuntos
Índice de Massa Corporal , Marcha/fisiologia , Monitorização Fisiológica/instrumentação , Sobrepeso , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/fisiologia , Masculino , Monitorização Fisiológica/métodos , Sobrepeso/fisiopatologia , Análise Espaço-Temporal , Caminhada/fisiologia
12.
Sensors (Basel) ; 19(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547181

RESUMO

Wearable sensors are de facto revolutionizing the assessment of standing balance. The aim of this work is to review the state-of-the-art literature that adopts this new posturographic paradigm, i.e., to analyse human postural sway through inertial sensors directly worn on the subject body. After a systematic search on PubMed and Scopus databases, two raters evaluated the quality of 73 full-text articles, selecting 47 high-quality contributions. A good inter-rater reliability was obtained (Cohen's kappa = 0.79). This selection of papers was used to summarize the available knowledge on the types of sensors used and their positioning, the data acquisition protocols and the main applications in this field (e.g., "active aging", biofeedback-based rehabilitation for fall prevention, and the management of Parkinson's disease and other balance-related pathologies), as well as the most adopted outcome measures. A critical discussion on the validation of wearable systems against gold standards is also presented.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas , Humanos
13.
Bioengineering (Basel) ; 6(3)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394803

RESUMO

In flexion-extension motion, the interaction of several ligaments and bones characterizes the elbow joint stability. The aim of this preliminary study was to quantify the relative motion of the ulna with respect to the humerus in two human upper limbs specimens and to investigate the constraints role for maintaining the elbow joint stability in different section conditions. Two clusters of four markers were fixed respectively to the ulna and humerus, and their trajectory was recorded by a motion capture system during functional orthopedic maneuver. Considering the posterior bundle of medial collateral complex (pMUCL) and the coronoid, two section sequences were executed. The orthopedic maneuver of compression, pronation and varus force was repeated at 30°, 60° and 90° flexion for the functional investigation of constraints. Ulna deflection was compared to a baseline elbow flexion condition. With respect to the intact elbow, the coronoid osteotomy influences the elbow stability at 90° (deflection = 11.49 ± 17.39 mm), while small differences occur at 30° and 60°, due to ligaments constraint. The contemporary pMUCL section and coronoid osteotomy causes elbow instability, with large deflection at 30° (deflection = 34.40 ± 9.10 mm), 60° (deflection = 45.41 ± 18.47 mm) and 90° (deflection = 52.16 ± 21.92 mm). Surgeons may consider the pMUCL reconstruction in case of unfixable coronoid fracture.

14.
Chemosphere ; 219: 989-996, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30682764

RESUMO

Mercury (Hg) is a global priority pollutant given its relevance in terms of environmental damage and threat to human health. Its ecotoxicity was tested using the benthic keystone species Hediste diversicolor as target species. After 10 days of exposure to different levels of inorganic Hg (10 and 50 µg L-1), bioaccumulation and a wide range of biological responses were evaluated at different biological levels, including biomarkers of exposure, neurotoxicity, oxidative stress, genotoxicity and cytochemistry. In controlled laboratory conditions, Hg was taken up by H. diversicolor in a dose-response manner and caused a range of biological responses, including oxidative stress (GSTs, GPx, GSH-2GSSG, and TOSCA), neurotoxicity (AChE), and cellular damages at the membrane level (LFs, NLs, Ca2+-ATPase); however, it did not cause significant DNA damage or mortality. This study confirms the capability of H. diversicolor to tolerate high levels of metals and clarifies the mechanisms underlying the damage caused by waterborne Hg and the defense mechanisms, activated in this species. In particular, detoxification of the inorganic form of Hg in this species was found to be strongly related to glutathione expression and several antioxidant enzymes of the antioxidant system. This process also efficiently minimized negative effects on DNA and prevented death, but was not sufficient to avoid neurotoxicity and some cellular damages, mainly at the intestinal level.


Assuntos
Exposição Ambiental , Mercúrio/toxicidade , Poliquetos/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Biomarcadores/análise , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos
15.
Adapt Phys Activ Q ; : 1-16, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563347

RESUMO

In cross-country sit-skiing, the trunk plays a crucial role in propulsion generation and balance maintenance. Trunk stability is evaluated by automatic responses to unpredictable perturbations; however, electromyography is challenging. The aim of this study was to identify a measure to group sit-skiers according to their ability to control the trunk. Seated in their competitive sit-ski, 10 male and 5 female Paralympic sit-skiers received 6 forward and 6 backward unpredictable perturbations in random order. k-means clustered trunk position at rest, delay to invert the trunk motion, and trunk range of motion significantly into 2 groups. In conclusion, unpredictable perturbations might quantify trunk impairment and may become an important tool in the development of an evidence-based classification system for cross-country sit-skiers.

16.
IEEE Trans Neural Syst Rehabil Eng ; 26(11): 2145-2152, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30334801

RESUMO

Functional electrical stimulation of lower limb muscles during rowing provides a means for the cardiovascular conditioning in paraplegia. The possibility of shaping stimulation profiles according to changes in knee angle, so far conceived as changes in seat position, may help circumventing open issues associated with muscle fatigue and movement coordination. Here, we present a subject-specific biomechanical model for the estimation of knee joint angle during indoor rowing. Anthropometric measurements and foot and seat positions are inputs to the model. We tested our model on two samples of elite rowers; 15 able-bodied, and 11 participants in the Rio 2016 Paralympic games. Paralympic rowers presented minor physical disabilities (LTA-PD classification), enabling them to perform the full rowing cycle (with legs, trunks, and arms). Knee angle was estimated from the rowing machine seat position, measured with a linear encoder, and transmitted wirelessly to a computer. Key results indicate the root mean square error (RMSE) between estimated and measured angles did not depend on group and stroke rate ( ). Significantly greater RMSE values were observed, however, within the rowing cycle ( ), reaching on average 8 deg in the mid-recovery phase. Differences between estimated and measured knee angle values resulted in slightly earlier (5%) detection of knee flexion, regardless of the group and stroke rate considered. Offset of knee extension, knee angle at catch and range of knee motion were identified equally well with our model and with inertial sensors. These results suggest our model describes accurately the movement of knee joint during indoor rowing.


Assuntos
Exercício Físico/fisiologia , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Paraplegia/fisiopatologia , Paraplegia/reabilitação , Adulto , Algoritmos , Fenômenos Biomecânicos , Desenho de Equipamento , Ergometria , Feminino , Voluntários Saudáveis , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Sci Rep ; 8(1): 9788, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955093

RESUMO

Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain.


Assuntos
Células Epiteliais/metabolismo , Adesões Focais/metabolismo , Imageamento Tridimensional , Glândulas Mamárias Animais/citologia , Mecanotransdução Celular , Estresse Mecânico , Animais , Sobrevivência Celular , Feminino , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Cinética , Camundongos Endogâmicos BALB C , Fibras de Estresse/metabolismo , Vinculina/metabolismo , Zixina/metabolismo
18.
PLoS One ; 12(11): e0187202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095908

RESUMO

INTRODUCTION: During rowing, foot positioning on the foot stretcher is critical to optimise muscle force transmission and boat propulsion. Following the beneficial effects of textured insoles on gait and balance, this study aims at investigating whether passive stimulation of foot mechanoreceptors induced by these insoles may contribute to improving foot loading pattern and symmetry during indoor rowing. METHODS: Eleven elite rowers were assessed during controlled training on a standard rowing machine while wearing control, low-density or high-density textured insoles. Plantar pressure and knee and trunk kinematics were measured; performance data were recorded from the machine. Insole effect on kinematic parameters, peak and average values of foot force, contact area and position of centre of pressure was assessed with ANOVA and Bonferroni correction for pair-wise comparisons. RESULTS: A main effect was observed for force and contact area, with the high-density insoles providing greatest values (P<0.035). No interaction was observed between side and insole (P>0.190), even though symmetry was higher with high-density insoles. Kinematics (P = 0.800) and rowing performance were not affected by insole type; a consistent though not statistically significant increase in mean travelled distance was observed for denser insoles (P>0.21). CONCLUSION: The high-density textured insoles affected foot loading distribution during indoor rowing. Rowers applied greater foot force and over a greater foot stretcher area with the high-density than the low-density and control insoles. These findings and the methodology applied may be relevant for the understanding and monitoring of rowing performance.


Assuntos
Pé/fisiologia , Pressão , Esportes Aquáticos , Adolescente , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Órtoses do Pé , Humanos , Masculino , Adulto Jovem
19.
Sensors (Basel) ; 17(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065485

RESUMO

Background: Wearable magneto-inertial sensors are being increasingly used to obtain human motion measurements out of the lab, although their performance in applications requiring high accuracy, such as gait analysis, are still a subject of debate. The aim of this work was to validate a gait analysis system (H-Gait) based on magneto-inertial sensors, both in normal weight (NW) and overweight/obese (OW) subjects. The validation is performed against a reference multichannel recording system (STEP32), providing direct measurements of gait timings (through foot-switches) and joint angles in the sagittal plane (through electrogoniometers). Methods: Twenty-two young male subjects were recruited for the study (12 NW, 10 OW). After positioning body-fixed sensors of both systems, each subject was asked to walk, at a self-selected speed, over a 14-m straight path for 12 trials. Gait signals were recorded, at the same time, with the two systems. Spatio-temporal parameters, ankle, knee, and hip joint kinematics were extracted analyzing an average of 89 ± 13 gait cycles from each lower limb. Intraclass correlation coefficient and Bland-Altmann plots were used to compare H-Gait and STEP32 measurements. Changes in gait parameters and joint kinematics of OW with respect NW were also evaluated. Results: The two systems were highly consistent for cadence, while a lower agreement was found for the other spatio-temporal parameters. Ankle and knee joint kinematics is overall comparable. Joint ROMs values were slightly lower for H-Gait with respect to STEP32 for the ankle (by 1.9° for NW, and 1.6° for OW) and for the knee (by 4.1° for NW, and 1.8° for OW). More evident differences were found for hip joint, with ROMs values higher for H-Gait (by 6.8° for NW, and 9.5° for OW). NW and OW showed significant differences considering STEP32 (p = 0.0004), but not H-Gait (p = 0.06). In particular, overweight/obese subjects showed a higher cadence (55.0 vs. 52.3 strides/min) and a lower hip ROM (23.0° vs. 27.3°) than normal weight subjects. Conclusions: The two systems can be considered interchangeable for what concerns joint kinematics, except for the hip, where discrepancies were evidenced. Differences between normal and overweight/obese subjects were statistically significant using STEP32. The same tendency was observed using H-Gait.


Assuntos
Biofísica/instrumentação , Peso Corporal , Marcha , Dispositivos Eletrônicos Vestíveis/normas , Adulto , Fenômenos Biomecânicos , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Magnetismo , Masculino , Obesidade , Sobrepeso , Caminhada
20.
Muscles Ligaments Tendons J ; 7(4): 493-502, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29721450

RESUMO

The elbow ligamentous and bony structures play essential roles in the joint stability. Nevertheless, the contribution of different structures to joint stability is not yet clear and a comprehensive experimental investigation into the ligament and osseous constraints changes in relation to joint motions would be uphill and somehow unattainable, due to the impossibility of obtaining all the possible configurations on the same specimen. Therefore, a predictive tool of the joint behavior after the loss of retentive structures would be helpful in designing reconstructive surgeries and in pre-operative planning. In this work, a multibody model consisting of bones and non-linear ligamentous structures is presented and validated through comparison with experimental data. An accurate geometrical model was equipped with non-linear ligaments bundles between optimized origin and insertion points. The joint function was simulated according to maneuvers accomplished in published experimental studies which explored the posteromedial rotatory instability (PMRI) in coronoid and posterior medial collateral ligament (PB) deficient elbows. Moreover, a complete design of experiments (DOE) was explored, investigating the influence of the elbow flexion degree, of the coronoid process and of the medial collateral ligaments (MCL) structures (anterior and posterior bundles) in the elbow joint opening. The implemented computational model accurately predicted the joint behavior with intact and deficient stabilizing structures at each flexion degree, and highlighted the statistically significant influence of the MCL structures (P<0.05) on the elbow stability. The predictive ability of this multibody elbow joint model let foresee that future investigations under different loading scenarios and injured or surgically reconstructed states could be effectively simulated, helping the ligaments reconstruction optimization in terms of bone tunnel localizations and grafts pre-loading. LEVEL OF EVIDENCE: V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...