Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 6944-6950, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498750

RESUMO

The nature of superconductivity and its interplay with strong spin-orbit coupling at the KTaO3(111) interfaces remain a subject of debate. To address this problem, we grew epitaxial LaMnO3/KTaO3(111) heterostructures. We show that superconductivity is robust against the in-plane magnetic field, with the critical field of superconductivity reaching ∼25 T in optimally doped heterostructures. The superconducting order parameter is highly sensitive to the carrier density. We argue that spin-orbit coupling drives the formation of anomalous quasiparticles with vanishing magnetic moment, providing significant condensate immunity against magnetic fields beyond the Pauli paramagnetic limit. These results offer design opportunities for superconductors with extreme resilience against the applied magnetic fields.

2.
Phys Chem Chem Phys ; 24(26): 15705-15717, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579107

RESUMO

Flat monolayers of silver(II) fluoride, which could be obtained by epitaxial deposition on an appropriate substrate, have been recently predicted to exhibit very strong antiferro-magnetic superexchange and to have large potential for ambient pressure superconductivity if doped to an optimal level. It was shown that AgF2 could become a magnetic glue-based superconductor with a critical superconducting temperature approaching 200 K at optimum doping. In the current work we calculate the optimum doping to correspond to 14% of holes per formula unit, i.e. quite similar to that for oxocuprates(II). Furthermore, using DFT calculations we show that flat [AgF2] single layers can indeed be doped to a controlled extent using a recently proposed "chemical capacitor" setup. Hole doping associated with the formation of Ag(III) proves to be difficult to achieve in the setup explored in this work as it falls at the verge of charge stability of fluoride anions and does not affect the d(x2 - y2) manifold. However, in the case of electron doping, manipulation of different factors - such as the number of dopant layers and the thickness of the separator - permits fine tuning of the doping level (and concomitantly TC) all the way from the underdoped to overdoped regime (in a similar manner to chemical doping for the Nd2CuO4 analogue).

3.
Sci Adv ; 8(21): eabl5668, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613270

RESUMO

The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO3 films with a low-temperature mobility exceeding 42,000 cm2 V-1 s-1 at a low carrier density of 3 × 1017 cm-3 were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- versus intraband scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO3.

4.
Nat Commun ; 8: 14317, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176779

RESUMO

The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept by computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors-one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.

6.
Phys Rev Lett ; 117(25): 257002, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036210

RESUMO

We study the effects of disorder on unconventional superconductors in the presence of correlations, and explore a novel correlated disorder paradigm dominated by strong deviations from standard Abrikosov-Gor'kov theory due to generation of local bound states and cooperative impurity behavior driven by Coulomb interactions. Specifically we explain under which circumstances magnetic disorder acts as a strong poison destroying high-T_{c} superconductivity at the sub-1% level, and when nonmagnetic disorder, counterintuitively, hardly affects the unconventional superconducting state while concomitantly inducing an inhomogeneous full-volume magnetic phase. Recent experimental studies of Fe-based superconductors have discovered that such unusual disorder behavior seems to be indeed present in those systems.

7.
Phys Rev Lett ; 114(9): 097003, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793844

RESUMO

The unusual temperature dependence of the resistivity and its in-plane anisotropy observed in the Fe-based superconducting materials, particularly Ba(Fe_{1-x}Co_{x})_{2}As_{2}, has been a long-standing puzzle. Here, we consider the effect of impurity scattering on the temperature dependence of the average resistivity within a simple two-band model of a dirty spin density wave metal. The sharp drop in resistivity below the Néel temperature T_{N} in the parent compound can only be understood in terms of a Lifshitz transition following Fermi surface reconstruction upon magnetic ordering. We show that the observed resistivity anisotropy in this phase, arising from nematic defect structures, is affected by the Lifshitz transition as well.

8.
Phys Rev Lett ; 113(12): 127001, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25279638

RESUMO

We consider the role of potential scatterers in the nematic phase of Fe-based superconductors above the transition temperature to the (π, 0) magnetic state but below the orthorhombic structural transition. The anisotropic spin fluctuations in this region can be frozen by disorder, to create elongated magnetic droplets whose anisotropy grows as the magnetic transition is approached. Such states act as strong anisotropic defect potentials that scatter with much higher probability perpendicular to their length than parallel, although the actual crystal symmetry breaking is tiny. We calculate the scattering potentials, relaxation rates, and conductivity in this region and show that such emergent defect states are essential for the transport anisotropy observed in experiments.

9.
Phys Rev Lett ; 113(6): 067002, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25148344

RESUMO

Recent experimental studies have revealed several unexpected properties of Mn-doped BaFe(2)As(2). These include extension of the stripelike magnetic (π,0) phase to high temperatures above a critical Mn concentration only, the presence of diffusive and weakly temperature dependent magnetic (π,π) checkerboard scattering, and an apparent absent structural distortion from tetragonal to orthorhombic symmetry. Here, we study the effects of magnetic impurities both below and above the Néel transition temperature within a real-space five-band model appropriate to the iron pnictides. We show how these experimental findings can be explained by a cooperative behavior of the magnetic impurities and the conduction electrons mediating the Ruderman-Kittel-Kasuya-Yosida interactions between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...