Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Sports Act Living ; 6: 1338883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500547

RESUMO

The objective of the present study was to confirm the convergent validity of information integration theory in the judgment of fatigue in sport, using information integration, subjective, and physiological data. Twenty healthy athletes were confronted with six cycling scenarios in two experimental conditions. In the laboratory condition, the athletes imagined the scenarios and had to cognitively combine the exercise intensity (30%, 50%, and 70% of the maximal intensity) and the exercise duration (15 and 30 min) when judging their expected level of fatigue. In the real sports condition, the athletes enacted each scenario and then rated their subjective fatigue. The heart rate was recorded continuously, so that the physiological training impulse could be calculated. We applied analyses of variance to the data and analyzed correlations between variables. The information integration data from the laboratory condition, the subjective data from the real sports condition, and the objective (physiological) data from the real sports condition were strongly correlated. The information integration patterns concerning fatigue as a function of the exercise duration and intensity obtained respectively from the three data sets were extremely similar.

2.
PLoS One ; 17(7): e0271233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35834532

RESUMO

PURPOSE: The aim of this review was to (1) characterize the time-course of markers of exercise-induced muscle damage (EIMD) based on the level of maximal voluntary contraction torque loss at 24-48h post-exercise (MVCloss24-48h), (2) identify factors (e.g., exercise and population characteristics) affecting the level of MVCloss24-48h, and (3) evaluate the appropriateness of EIMD markers as indicators of MVCloss24-48h. METHODS: Magnitude of change of each EIMD markers was normalized using the standardized mean differences method to compare the results from different studies. Time-course of EIMD markers were characterized according to three levels of MVCloss24-48h based on a clustering analysis of the 141 studies included. Association between MVCloss24-48h levels and participant´s characteristics or exercise type/modalities were assessed. Meta-regressions were performed to investigate the associations between MVCloss24-48h and EIMD markers changes at <6h, 24h, 48h, 72h and >96h after exercise. RESULTS: Time-course of EIMD markers recovery differs between levels of MVCloss24-48h. Training status and exercise type/modality were associated with MVCloss24-48h level (p<0.05). MVCloss24-48h was correlated to changes in myoglobin concentration (<6h), jump height (24h) and range of motion (48h) (p<0.001). CONCLUSION: As the exercise could differently affect markers as function of the EIMD severity (i.e., MVCloss24-48h levels), different markers should be used as function of the timing of measurement. Mb concentration should be used during the first hours after the exercise (<6h), whereas jump height (24h) and range of motion (48h) could be used as surrogate for maximal voluntary contraction later. Moreover, training status and exercise type/modality could influence the magnitude of MVCloss24-48h.


Assuntos
Contração Muscular , Músculo Esquelético , Biomarcadores , Exercício Físico/fisiologia , Humanos , Extremidade Inferior , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Mialgia , Torque
3.
Chest ; 157(6): 1568-1578, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32081649

RESUMO

BACKGROUND: Pulmonary capillary stress failure is potentially involved in exercise-induced hypoxemia (ie, a significant fall in hemoglobin oxygen saturation [Spo2]) during sea level exercise in endurance-trained athletes. It is unknown whether there are specific properties of pulmonary vascular function in athletes exhibiting oxygen desaturation. METHODS: Ten endurance-trained athletes with exercise-induced hypoxemia (EIH), nine endurance-trained athletes with no exercise-induced hypoxemia (NEIH), and 10 untrained control subjects underwent an incremental exercise stress echocardiography coupled with lung diffusion capacity for carbon monoxide (Dlco) and lung diffusion capacity for nitric oxide (Dlno) testing. Functional adaptation of the pulmonary circulation was evaluated with measurements of mean pulmonary arterial pressure (mPAP), pulmonary capillary pressure, pulmonary vascular resistance (PVR), cardiac output (Qc), and pulmonary vascular distensibility (alpha) mathematically determined from the curvilinearity of the multi-point mPAP/Qc relation. RESULTS: EIH athletes exhibited a lower exercise-induced PVR decrease compared with the untrained and NEIH groups (P < .001). EIH athletes showed higher maximal mPAP compared with NEIH athletes (45.4 ± 0.9 mm Hg vs 41.6 ± 0.9 mm Hg, respectively; P = .003); there was no difference between the NEIH and untrained subjects. Alpha was lower in the EIH group compared with the NEIH group (P < .05). Maximal mPAP, Pcap, and alpha were correlated with the fall of Spo2 during exercise (P < .01, P < .01, and P < .05). Dlno and Dlco increased with exercise in all groups, with no differences between groups. Dlno/Qc was correlated to the exercise-induced Spo2 changes (P < .05). CONCLUSIONS: EIH athletes exhibit higher maximal pulmonary vascular pressures, lower vascular distensibility, or exercise-induced changes in PVR compared with NEIH subjects, in keeping with pulmonary capillary stress failure or intrapulmonary shunting hypotheses.


Assuntos
Adaptação Fisiológica/fisiologia , Atletas , Hipóxia/fisiopatologia , Pulmão/fisiopatologia , Resistência Física/fisiologia , Circulação Pulmonar/fisiologia , Adulto , Ecocardiografia sob Estresse , Teste de Esforço , Voluntários Saudáveis , Humanos , Hipóxia/etiologia , Masculino , Consumo de Oxigênio/fisiologia
4.
Med Sci Sports Exerc ; 49(10): 2131-2138, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28915226

RESUMO

PURPOSE: There has been suggestion that a greater "pulmonary vascular reserve" defined by a low pulmonary vascular resistance (PVR) and a high lung diffusing capacity (DL) allow for a superior aerobic exercise capacity. How pulmonary vascular reserve might affect exercise capacity at moderate altitude is not known. METHODS: Thirty-eight healthy subjects underwent an exercise stress echocardiography of the pulmonary circulation, combined with measurements of DL for nitric oxide (NO) and carbon monoxide (CO) and a cardiopulmonary exercise test at sea level and at an altitude of 2250 m. RESULTS: At rest, moderate altitude decreased arterial oxygen content (CaO2) from 19.1 ± 1.6 to 18.4 ± 1.7 mL·dL, P < 0.001, and slightly increased PVR, DLNO, and DLCO. Exercise at moderate altitude was associated with decreases in maximum O2 uptake (V˙O2max), from 51 ± 9 to 43 ± 8 mL·kg⋅min, P < 0.001, and CaO2 to 16.5 ± 1.7 mL·dL, P < 0.001, but no different cardiac output, PVR, and pulmonary vascular distensibility. DLNO was inversely correlated to the ventilatory equivalent of CO2 (V˙E/V˙CO2) at sea level and at moderate altitude. Independent determinants of V˙O2max as determined by a multivariable analysis were the slope of mean pulmonary artery pressure-cardiac output relationship, resting stroke volume, and resting DLNO at sea level as well as at moderate altitude. The magnitude of the decrease in V˙O2max at moderate altitude was independently predicted by more pronounced exercise-induced decrease in CaO2 at moderate altitude. CONCLUSION: Aerobic exercise capacity is similarly modulated by pulmonary vascular reserve at moderate altitude and at sea level. Decreased aerobic exercise capacity at moderate altitude is mainly explained by exercise-induced decrease in arterial oxygenation.


Assuntos
Altitude , Tolerância ao Exercício/fisiologia , Capacidade de Difusão Pulmonar/fisiologia , Resistência Vascular/fisiologia , Adulto , Monóxido de Carbono/fisiologia , Débito Cardíaco/fisiologia , Ecocardiografia sob Estresse , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Óxido Nítrico/fisiologia , Oxigênio/sangue , Circulação Pulmonar/fisiologia
5.
Appl Physiol Nutr Metab ; 42(11): 1135-1141, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28666093

RESUMO

Although it is known that altitude impairs performance in endurance sports, there is no consensus on the involvement of energy substrates in this process. The objective of the present study was to determine whether the metabolomic pathways used during endurance exercise differ according to whether the effort is performed at sea level or at moderate altitude (at the same exercise intensity, using proton nuclear magnetic resonance, 1H NMR). Twenty subjects performed two 60-min endurance exercise tests at sea level and at 2150 m at identical relative intensity on a cycle ergometer. Blood plasma was obtained from venous blood samples drawn before and after exercise. 1H NMR spectral analysis was then performed on the plasma samples. A multivariate statistical technique was applied to the NMR data. The respective relative intensities of the sea level and altitude endurance tests were essentially the same when expressed as a percentage of the maximal oxygen uptake measured during the corresponding incremental maximal exercise test. Lipid use was similar at sea level and at altitude. In the plasma, levels of glucose, glutamine, alanine, and branched-chain amino acids had decreased after exercise at altitude but not after exercise at sea level. The decrease in plasma glucose and free amino acid levels observed after exercise at altitude indicated that increased involvement of the protein pathway was necessary but not sufficient for the maintenance of glycaemia. Metabolomics is a powerful means of gaining insight into the metabolic changes induced by exercise at altitude.


Assuntos
Altitude , Exercício Físico , Espectroscopia de Ressonância Magnética , Metabolômica , Adulto , Glicemia/metabolismo , Índice de Massa Corporal , Aptidão Cardiorrespiratória , Teste de Esforço , Humanos , Imageamento por Ressonância Magnética , Masculino , Consumo de Oxigênio , Resistência Física
6.
PLoS One ; 11(9): e0161819, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27583364

RESUMO

PURPOSE: The aim of this study was to investigate the impact of exercise-induced hypoxaemia (EIH) developed at sea-level on exercise responses at moderate acute altitude. METHODS: Twenty three subjects divided in three groups of individuals: highly trained with EIH (n = 7); highly trained without EIH (n = 8) and untrained participants (n = 8) performed two maximal incremental tests at sea-level and at 2,150 m. Haemoglobin O2 saturation (SpO2), heart rate, oxygen uptake (VO2) and several ventilatory parameters were measured continuously during the tests. RESULTS: EIH athletes had a drop in SpO2 from 99 ± 0.8% to 91 ± 1.2% from rest to maximal exercise at sea-level, while the other groups did not exhibit a similar decrease. EIH athletes had a greater decrease in VO2max at altitude compared to non-EIH and untrained groups (-22 ± 7.9%, -16 ± 5.3% and -13 ± 9.4%, respectively). At altitude, non-EIH athletes had a similar drop in SpO2 as EIH athletes (13 ± 0.8%) but greater than untrained participants (6 ± 1.0%). EIH athletes showed greater decrease in maximal heart rate than non-EIH athletes at altitude (8 ± 3.3 bpm and 5 ± 2.9 bpm, respectively). CONCLUSION: EIH athletes demonstrated specific cardiorespiratory response to exercise at moderate altitude compared to non-EIH athletes with a higher decrease in VO2max certainly due to the lower ventilator and HRmax responses. Thus EIH phenomenon developed at sea-level negatively impact performance and cardiorespiratory responses at acute moderate altitude despite no potentiated O2 desaturation.


Assuntos
Altitude , Exercício Físico , Hipóxia/fisiopatologia , Adaptação Fisiológica , Adulto , Humanos , Masculino , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...