Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(28): 6241-6250, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37414583

RESUMO

Amyloid aggregation describes the aberrant self-assembly of peptides into ordered fibrils characterized by cross-ß spine cores and is associated with many neurodegenerative diseases and Type 2 diabetes. Oligomers, populated during the early stage of aggregation, are found to be more cytotoxic than mature fibrils. Recently, many amyloidogenic peptides have been reported to undergo liquid-liquid phase separation (LLPS)─a biological process important for the compartmentalization of biomolecules in living cells─prior to fibril formation. Understanding the relationship between LLPS and amyloid aggregation, especially the formation of oligomers, is essential for uncovering disease mechanisms and mitigating amyloid toxicity. In this Perspective, available theories and models of amyloid aggregation and LLPS are first briefly reviewed. By drawing analogies to gas, liquid, and solid phases in thermodynamics, a phase diagram of protein monomer, droplet, and fibril states separated by coexistence lines can be inferred. Due to the high free energy barrier of fibrillization kinetically delaying the formation of fibril seeds out of the droplets, a "hidden" monomer-droplet coexistence line extends into the fibril phase. Amyloid aggregation can then be described as the equilibration process from the initial "out-of-equilibrium" state of a homogeneous solution of monomers to the final equilibrium state of stable amyloid fibrils coexisting with monomers and/or droplets via the formation of metastable or stable droplets as the intermediates. The relationship between droplets and oligomers is also discussed. We suggest that the droplet formation of LLPS should be considered in future studies of amyloid aggregation, which may help to better understand the aggregation process and develop therapeutic strategies to mitigate amyloid toxicity.


Assuntos
Amiloide , Diabetes Mellitus Tipo 2 , Humanos , Amiloide/química , Proteínas Amiloidogênicas , Peptídeos , Transição de Fase , Peptídeos beta-Amiloides/química
2.
ACS Chem Neurosci ; 14(7): 1321-1330, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36975100

RESUMO

Both senile plaques formed by amyloid-ß (Aß) and neurofibrillary tangles (NFTs) comprised of tau are pathological hallmarks of Alzheimer's disease (AD). The accumulation of NFTs better correlates with the loss of cognitive function than senile plaques, but NFTs are rarely observed without the presence of senile plaques. Hence, cross-seeding of tau by preformed Aß amyloid fibril seeds has been proposed to drive the aggregation of tau and exacerbate AD progression, but the molecular mechanism remains unknown. Here, we first identified cross-interaction hotspots between Aß and tau using atomistic discrete molecular dynamics simulations (DMD) and confirmed the critical role of the four microtubule-binding repeats of tau (R1-R4) in the cross-interaction with Aß. We further investigated the binding structure and dynamics of each tau repeat with a preformed Aß fibril seed. Specifically, R1 and R3 preferred to bind the Aß fibril lateral surface instead of the elongation end. In contrast, R2 and R4 had higher binding propensities to the fibril elongation end than the lateral surface, enhancing ß-sheet content by forming hydrogen bonds with the exposed hydrogen bond donors and acceptors. Together, our results suggest that the four repeats play distinct roles in driving the binding of tau to different surfaces of an Aß fibril seed. Binding of tau to the lateral surface of Aß fibril can increase the local concentration, while the binding to the elongation surface promotes ß-sheet formation, both of which reduce the free energy barrier for tau aggregation nucleation and subsequent fibrillization.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Amiloide , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...