Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 39(3): 601-610, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31395540

RESUMO

Reconstruction of white matter connectivity in the fetal brain from in utero diffusion-weighted magnetic resonance imaging (MRI) faces many challenges, including subject motion, small anatomical scale, and limited image resolution and signal. These issues are compounded by the need to track significant changes in structural connectivity throughout development. We present an automated method for improved reliability and completeness of tract extraction across a wide range of gestational ages, based on the geometry of coherent patterns in streamline tractography, and apply it to the reconstruction of the corpus callosum. This method, focused specifically at addressing the challenges of fetal brain imaging, avoids depending on a tractography atlas, and handles variations in size, shape, and tissue properties of developing brains, both between subjects and across ages. Although tractography from in utero MRI generally suffers from a significant number of misleading and missing pathways, we demonstrate the feasibility of extracting the coherent bundle of the corpus callosum while avoiding inappropriate diversions into other tracts.


Assuntos
Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Feto/diagnóstico por imagem , Bases de Dados Factuais , Imagem de Difusão por Ressonância Magnética , Idade Gestacional , Humanos , Washington
2.
Top Magn Reson Imaging ; 28(5): 265-273, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31592993

RESUMO

The white matter structure of the human brain undergoes critical developmental milestones in utero, which we can observe noninvasively using diffusion-weighted magnetic resonance imaging. In order to understand this fascinating developmental process, we must establish the variability inherent in such a challenging imaging environment and how measurable quantities can be transformed into meaningful connectomes. We review techniques for reconstructing and studying the brain connectome and explore promising opportunities for in utero studies that could lead to more accurate measurement of structural properties and allow for more refined and insightful analyses of the fetal brain. Opportunities for more sophisticated analyses of the properties of the brain and its dynamic changes have emerged in recent years, based on the development of iterative techniques to reconstruct motion-corrupted diffusion-weighted data. Although reconstruction quality is greatly improved, the treatment of fundamental quantities like edge strength requires careful treatment because of the specific challenges of imaging in utero. There are intriguing challenges to overcome, from those in analysis due to both imaging limitations and the significant changes in structural connectivity, to further image processing to address the specific properties of the target anatomy and quantification into a developmental connectome.


Assuntos
Encéfalo/embriologia , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador
3.
J Neurol Sci ; 378: 38-44, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28566175

RESUMO

Brain iron has been previously found elevated in the substantia nigra pars compacta (SNpc), but not in other brain regions, of Parkinson's disease (PD) patients. However, iron in circulation has been recently observed to be lower than normal in PD patients. The regional selectivity of iron deposition in brain as well as the relationship between SNpc brain iron and serum iron within PD patients has not been completely elucidated. In this pilot study we measured brain iron in six regions of interest (ROIs) as well as serum iron and serum ferritin, in 24 PD patients and 27 age- gender-matched controls. Brain iron was measured on magnetic resonance imaging (MRI) with a T2 prime (T2') method. Difference in brain iron deposition between PD cases and controls for the six ROIs were calculated. SNpc/white matter brain iron ratios and SNpc/serum iron ratios were calculated for each study participant, and differences between PD patients and controls were tested. PD patients overall had higher brain iron than controls in the SNpc. PD patients had significantly higher SNpc/white matter brain iron ratios than controls, and significantly higher brain SNpc iron/serum iron ratios than controls. These results indicate that PD patients' iron metabolism is disrupted toward a higher partitioning of iron to the brain SNpc at the expenses of iron in the circulation.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ferro/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Biomarcadores/sangue , Feminino , Ferritinas/sangue , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fatores Sexuais
4.
Magn Reson Med ; 78(3): 909-916, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27699879

RESUMO

PURPOSE: Maximization of the blood oxygen level-dependent (BOLD) functional MRI (fMRI) contrast requires the echo time of the MR sequence to match the T2* value of the tissue of interest, which is expected to be higher in the fetal brain compared with the brain of a child or an adult. METHODS: T2* values of the cortical plate/cortical gray matter tissue in utero in healthy fetuses from mid-gestation onward (20-36 gestational weeks) were measured using 3D T2* maps calculated from 2D dual-echo T2*-weighted data corrected for between-slice motion and reconstructed in 1.0 mm3 isotropic resolution from a sequence of multiple time points, together with 1.0 mm3 isotropic resolution T2-weighted structural data. RESULTS: Mean T2* relaxation times of the cortical tissue were about twice as high as those reported previously in adults. In a supporting experiment applying single seed analysis, default mode and auditory networks appeared better localized and less noisy while using an echo time of 100 ms versus 43 ms. The results of the previous study reporting a trend for T2* values to decrease with fetal age were reproduced and extended to include cortical tissues and subjects in earlier gestation (20-26 gestational weeks). CONCLUSION: The first measurement of T2* values in fetal cortical tissues suggested the appropriate echo time range for fetal BOLD fMRI protocol optimization to be 130-190 ms. Magn Reson Med 78:909-916, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Diagnóstico Pré-Natal/métodos , Adulto , Feminino , Humanos , Masculino , Gravidez
5.
Hum Brain Mapp ; 37(11): 4158-4178, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510837

RESUMO

Recently, there has been considerable interest, especially for in utero imaging, in the detection of functional connectivity in subjects whose motion cannot be controlled while in the MRI scanner. These cases require two advances over current studies: (1) multiecho acquisitions and (2) post processing and reconstruction that can deal with significant between slice motion during multislice protocols to allow for the ability to detect temporal correlations introduced by spatial scattering of slices into account. This article focuses on the estimation of a spatially and temporally regular time series from motion scattered slices of multiecho fMRI datasets using a full four-dimensional (4D) iterative image reconstruction framework. The framework which includes quantitative MRI methods for artifact correction is evaluated using adult studies with and without motion to both refine parameter settings and evaluate the analysis pipeline. ICA analysis is then applied to the 4D image reconstruction of both adult and in utero fetal studies where resting state activity is perturbed by motion. Results indicate quantitative improvements in reconstruction quality when compared to the conventional 3D reconstruction approach (using simulated adult data) and demonstrate the ability to detect the default mode network in moving adults and fetuses with single-subject and group analysis. Hum Brain Mapp 37:4158-4178, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Diagnóstico Pré-Natal , Adulto , Algoritmos , Encéfalo/embriologia , Simulação por Computador , Feminino , Humanos , Modelos Lineares , Masculino , Modelos Neurológicos , Movimento (Física) , Vias Neurais/diagnóstico por imagem , Vias Neurais/embriologia , Vias Neurais/fisiologia , Gravidez , Terceiro Trimestre da Gravidez , Descanso
6.
Psychosom Med ; 78(4): 454-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26867073

RESUMO

OBJECTIVE: To test the relationship of anxiety to caloric intake and food cue perception in women and men. METHODS: Fifty-five twins (26 complete, 3 incomplete pairs; 51% women) underwent 2 functional magnetic resonance imaging (fMRI) scans (before and after a standardized meal) and then ate at an ad libitum buffet to objectively assess food intake. State and trait anxiety were assessed using the State-Trait Anxiety Inventory. During the fMRI scans, participants viewed blocks of fattening and nonfattening food images, and nonfood objects. RESULTS: In women, higher trait anxiety was associated with a higher body mass index (BMI) (r = 0.40, p = .010). Trait anxiety was positively associated with kilocalories consumed at the buffet (r = 0.53, p = .005) and percent kilocalories consumed from fat (r = 0.30, p = .006), adjusted for BMI. In within-pair models, which control for shared familial and genetic factors, higher trait anxiety remained associated with kilocalories consumed at the buffet (p = .66, p = .014), but not with BMI. In men, higher state anxiety was related to macronutrient choices, but not to total caloric intake or BMI. FMRI results revealed that women with high trait anxiety did not suppress activation by fattening food cues across brain regions associated with satiety perception after eating a standardized meal (low anxiety, mean difference = -15.4, p < .001; high anxiety, mean difference = -1.53, p = .82, adjusted for BMI). CONCLUSIONS: In women, trait anxiety may promote excess caloric consumption through altered perception of high-calorie environmental food cues, placing women with genetic predispositions toward weight gain at risk of obesity. TRIAL REGISTRATION: Clinicaltrials.govidentifier:NCT02483663.


Assuntos
Ansiedade , Índice de Massa Corporal , Encéfalo/fisiologia , Ingestão de Energia/fisiologia , Comportamento Alimentar/fisiologia , Imageamento por Ressonância Magnética/métodos , Saciação/fisiologia , Adulto , Ansiedade/diagnóstico por imagem , Ansiedade/fisiopatologia , Ansiedade/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Sinais (Psicologia) , Gorduras na Dieta , Feminino , Humanos , Masculino , Adulto Jovem
7.
Neuroimage ; 54(2): 1012-20, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20887793

RESUMO

This study aimed to evaluate the ability of BOLD signals at high MRI field (7 T) to map fine-scale single-digit activations in subdivisions (areas 3b and 1) of the human primary somatosensory cortex (SI) in individual subjects. We acquired BOLD fMRI data from cortical areas around the central suclus in six healthy human subjects while stimulating individual finger pads with 2-Hz air puffs. Discrete, single-digit responses were identified in an area along the posterior bank of the central sulcus corresponding to area 3b and in an area along the crest of the postcentral gyrus corresponding to area 1. In single subjects, activations of digits 1 to 4 in both areas 3b and 1 were organized in a somatotopic manner. The separation of digit representations was measured for adjacent digits and was approximately 1.6 times greater in area 3b than in area 1. Within individual subjects, the cortical responses to single-digit stimulations and the magnitude of the BOLD signals were reproducible across imaging runs and were comparable across subjects. Our findings demonstrate that BOLD fMRI at 7 T is capable of revealing the somatotopic organization of single-digit activations with good within-subject reliability and reproducibility, and activation maps can be acquired within a reasonably short time window, which are essential characteristics for several neurological applications within patient populations.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/anatomia & histologia , Feminino , Dedos/inervação , Humanos , Masculino , Estimulação Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...