Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(26): 8944-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18574148

RESUMO

The transcription factor Stat1 plays an essential role in responses to interferons (IFNs). Activation of Stat1 is achieved by phosphorylation on Y701 that is followed by nuclear accumulation. For full transcriptional activity and biological function Stat1 must also be phosphorylated on S727. The molecular mechanisms underlying the IFN-induced S727 phosphorylation are incompletely understood. Here, we show that both Stat1 Y701 phosphorylation and nuclear translocation are required for IFN-induced S727 phosphorylation. We further show that Stat1 mutants lacking the ability to stably associate with chromatin are poorly serine-phosphorylated in response to IFN-gamma. The S727 phosphorylation of these mutants is restored on IFN-beta treatment that induces the formation of the ISGF3 complex (Stat1/Stat2/Irf9) where Irf9 represents the main DNA binding subunit. These findings indicate that Stat1 needs to be assembled into chromatin-associated transcriptional complexes to become S727-phosphorylated and fully biologically active in response to IFNs. This control mechanism, which may be used by other Stat proteins as well, restricts the final activation step to the chromatin-tethered transcription factor.


Assuntos
Cromatina/metabolismo , Interferon beta/farmacologia , Interferon gama/farmacologia , Fosfosserina/metabolismo , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/metabolismo , Ativação Transcricional/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatina/efeitos dos fármacos , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína
2.
J Biol Chem ; 283(29): 19879-87, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18480050

RESUMO

Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-kappaB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.


Assuntos
Interferon Tipo I/biossíntese , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Streptococcus pyogenes , Animais , Células Cultivadas , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator de Transcrição STAT1/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
3.
Genome Res ; 16(11): 1339-44, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065604

RESUMO

The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.


Assuntos
Abelhas/genética , Genoma de Inseto , Recombinação Genética , Animais , Composição de Bases , Cromossomos/genética , DNA/química , DNA/genética , Genes de Insetos , Repetições Minissatélites , Dados de Sequência Molecular , Polimorfismo Genético
4.
Blood ; 107(12): 4790-7, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16514065

RESUMO

Interferons (IFNs) are cytokines with pronounced proinflammatory properties. Here we provide evidence that IFNs also play a key role in decline of inflammation by inducing expression of tristetraprolin (Ttp). TTP is an RNA-binding protein that destabilizes several AU-rich element-containing mRNAs including TNFalpha. By promoting mRNA decay, TTP significantly contributes to cytokine homeostasis. Now we report that IFNs strongly stimulate expression of TTP if a costimulatory stress signal is provided. IFN-induced expression of Ttp depends on the IFN-activated transcription factor STAT1, and the costimulatory stress signal requires p38 MAPK. Within the Ttp promoter we have identified a functional gamma interferon-activated sequence that recruits STAT1. Consistently, STAT1 is required for full expression of Ttp in response to LPS that stimulates both p38 MAPK and, indirectly, interferon signaling. We demonstrate that in macrophages IFN-induced TTP protein limits LPS-stimulated expression of several proinflammatory genes, such as TNFalpha, IL-6, Ccl2, and Ccl3. Thus, our findings establish a link between interferon responses and TTP-mediated mRNA decay during inflammation, and propose a novel immunomodulatory role of IFNs.


Assuntos
Regulação da Expressão Gênica/imunologia , Interferons/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/imunologia , Estabilidade de RNA/imunologia , Tristetraprolina/imunologia , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Homeostase/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Estabilidade de RNA/efeitos dos fármacos , Elementos de Resposta/genética , Elementos de Resposta/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Tristetraprolina/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...