Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 121(2): e2316498121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170754

RESUMO

Glasses are commonly described as disordered counterparts of the corresponding crystals; both usually share the same short-range order, but glasses lack long-range order. Here, a quantification of chemical bonding in a series of glasses and their corresponding crystals is performed, employing two quantum-chemical bonding descriptors, the number of electrons transferred and shared between adjacent atoms. For popular glasses like SiO2, GeSe2, and GeSe, the quantum-chemical bonding descriptors of the glass and the corresponding crystal hardly differ. This explains why these glasses possess a similar short-range order as their crystals. Unconventional glasses, which differ significantly in their short-range order and optical properties from the corresponding crystals are only found in a distinct region of the map spanned by the two bonding descriptors. This region contains crystals of GeTe, Sb2Te3, and GeSb2Te4, which employ metavalent bonding. Hence, unconventional glasses are only obtained for solids, whose crystals employ theses peculiar bonds.

3.
Adv Sci (Weinh) ; 11(6): e2308578, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059800

RESUMO

A family of solids including crystalline phase change materials such as GeTe and Sb2 Te3 , topological insulators like Bi2 Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half-filled p-bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron-deficient (metavalent) or electron-rich (hypervalent). This disagreement raises concerns about the accuracy of quantum-chemical bonding descriptors is showed. Here independent of the approach chosen, electron-deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron-rich XeF2 and electron-deficient GeTe shows that in both cases p-electrons govern bonding, while s-electrons only play a minor role. Yet, the properties of the electron-deficient crystals are very different from molecular crystals of electron-rich XeF2 or electron-deficient B2 H6 . The unique properties of phase change materials and related solids can be attributed to an extended system of half-filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids.

5.
J Phys Chem A ; 127(24): 5104-5119, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37285603

RESUMO

Extracting─from the vast space of organic compounds─the best electrode candidates for achieving energy material breakthrough requires the identification of the microscopic causes and origins of various macroscopic features, including notably electrochemical and conduction properties. As a first guess of their capabilities, molecular DFT calculations and quantum theory of atoms in molecules (QTAIM)-derived indicators were applied to explore the family of pyrano[3,2-b]pyran-2,6-dione (PPD, i.e., A0) compounds, expanded to A0 fused with various kinds of rings (benzene, fluorinated benzene, thiophene, and merged thiophene/benzene). A glimpse of up-to-now elusive key incidences of introducing oxygen in vicinity to the carbonyl redox center within 6MRs─as embedded in the A0 core central unit common to all A-type compounds─has been gained. Furthermore, the main driving force toward achieving modulated low redox potential/band gaps thanks to fusing the aromatic rings for the A compound series was discovered.

6.
ACS Appl Mater Interfaces ; 15(12): 16317-16326, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926821

RESUMO

Ultrathin diamond films, or diamanes, are promising quasi-2D materials that are characterized by high stiffness, extreme wear resistance, high thermal conductivity, and chemical stability. Surface functionalization of multilayer graphene with different stackings of layers could be an interesting opportunity to induce proper electronic properties into diamanes. Combination of these electronic properties together with extraordinary mechanical ones will lead to their applications as field-emission displays substituting original devices with light-emitting diodes or organic light-emitting diodes. In the present study, we focus on the electronic properties of fluorinated and hydrogenated diamanes with (111), (110), (0001), (101̅0), and (2̅110) crystallographic orientations of surfaces of various thicknesses by using first-principles calculations and Bader analysis of electron density. We see that fluorine induces an occupied surface electronic state, while hydrogen modifies the occupied bulk state and also induces unoccupied surface states. Furthermore, a lower number of layers is necessary for hydrogenated diamanes to achieve the convergence of the work function in comparison with fluorinated diamanes, with the exception of fluorinated (110) and (2̅110) films that achieve rapid convergence and have the same behavior as other hydrogenated surfaces. This induces a modification of the work function with an increase of the number of layers that makes hydrogenated (2̅110) diamanes the most suitable surface for field-emission displays, better than the fluorinated counterparts. In addition, a quasi-quantitative descriptor of surface dipole moment based on the Tantardini-Oganov electronegativity scale is introduced as the average of bond dipole moments between the surface atoms. This new fundamental descriptor is capable of predicting a priori the bond dipole moment and may be considered as a new useful feature for crystal structure prediction based on artificial intelligence.

7.
Adv Mater ; 35(20): e2208485, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36456187

RESUMO

Quantum chemical bonding descriptors have recently been utilized to design materials with tailored properties. Their usage to facilitate a quantitative description of bonding in chalcogenides as well as the transition between different bonding mechanisms is reviewed. More importantly, these descriptors can also be employed as property predictors for several important material characteristics, including optical and transport properties. Hence, these quantum chemical bonding descriptors can be utilized to tailor material properties of chalcogenides relevant for thermoelectrics, photovoltaics, and phase-change memories. Relating material properties to bonding mechanisms also shows that there is a class of materials, which are characterized by unconventional properties such as a pronounced anharmonicity, a large chemical bond polarizability, and strong optical absorption. This unusual property portfolio is attributed to a novel bonding mechanism, fundamentally different from ionic, metallic, and covalent bonding, which is called "metavalent." In the concluding section, a number of promising research directions are sketched, which explore the nature of the property changes upon changing bonding mechanism and extend the concept of quantum chemical property predictors to more complex compounds.

8.
J Phys Chem A ; 126(51): 9577-9593, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36534011

RESUMO

Material design enters an era in which control of electrons in atoms, molecules, and materials is an essential property to be predicted and thoroughly understood in view of discovering new compounds with properties optimized toward specific optical/optoelectronic applications. π-electronic delocalization and charge separation/recombination enter notably into the set of features that are highly desirable to tailor. Diverse domains are particularly relying on photoinduced electron-transfer (PET), including fields of paramount importance such as energy production through light-harvesting, efficient chemoreceptive sensors, or organic field-effect transistors. In view of completing the arsenal of strategies in this area, we selected Brooker's merocyanine─a typical [D-π-A] compound─as the case study and examined from time-dependent density functional theory the opportunity offered by selected excited states to reach a suited manipulation of the charge transfer (CT) extent. In addition to the consideration of diagnostic tools able to spot the charge amount (i.e., magnitude of electron fraction) transferred upon excitation (qCT), the spatial extent associated with such an electronic transition or CT length (DCT), as well as the corresponding variation in dipole moment between the ground and the excited states (µCT), further analysis of the excitation process was undertaken. The advantage of going beyond the above-mentioned molecular indicators─which can be considered as PET global indices─was explored on the basis of a partitioning of the electron density. Relevant insight was gained on the relation these global indices have with the evolution of (local) features characterizing either chemical bond or electron delocalization upon vertical excitations.

9.
J Phys Chem A ; 126(36): 6314-6328, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053727

RESUMO

A model for decomposing the Le Bahers, Adamo, and Ciofini Charge Transfer (CT) Excitations global indexes ( J. Chem. Theory Comput. 2011, 7, 2498-2506) into molecular subdomains contributions is presented and a software, DOCTRINE (atomic group Decomposition Of the Charge TRansfer INdExes) for the implementation of this novel model has been coded. Although our method applies to any fuzzy or to any disjoint exhaustive partitioning of the real space, it is here applied using a definition of chemically relevant molecular subdomains based on the Atoms in Molecules Bader basins. This choice has the relevant advantage of associating intra or inter subdomain contributions to rigorously defined quantum objects, yet bearing a clear chemical meaning. Our method allows for a quantitative evaluation of the subdomain contributions to the charge transfer, the charge transfer excitation length and the dipole moment change upon excitation. All these global indexes may be obtained either from the electron density increment or the electron density depletion upon excitation. However, the subdomain contributions obtained from the two distributions generally differ, therefore allowing to distinguish whether the contribution to a given property of a given subdomain is dominated by one of the two distributions or if both are playing a significant role. As a toy system for the first application of our model, a typical [D-π-A, π = conjugated bridge] compound belonging to the merocyanine dyes family is selected, and the first four excited states of this compound in a strongly polar protic solvent and in a weakly polar solvent are thoroughly investigated.

10.
J Chromatogr A ; 1673: 463097, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35544969

RESUMO

Planar chiral halogenated ferrocenes have come in useful as synthetic intermediates over the years, allowing for the preparation of functionalized derivatives for catalysis, material science, optoelectronics, and medicinal chemistry. Despite their chemical interest, few halogenated planar chiral ferrocenes have been prepared in enantiopure form by asymmetric synthesis so far. Enantioselective HPLC on polysaccharide-based chiral stationary phases (CSPs) has been used for resolving planar chiral ferrocenes making both enantiomers available. However, the enantioseparation of derivatives containing halogens or alkyl groups exclusively remains rather challenging. Given this context, in this study the enantioseparation of eleven dihalogenated planar chiral ferrocenes was systematically explored by using five polysaccharide-based CSPs under multimodal elution conditions. Baseline enantioseparations were achieved for nine analytes with separation factors (α) ranging from 1.15 to 1.66. Thermodynamic quantities associated with the enantioseparations were derived from van't Hoff plots, and for 1-halo-2-(iodoethynyl)ferrocenes (1-halogen = F, Cl, Br) halogen-dependent thermodynamic profiles were identified on a cellulose tris(3,5-dimethylphenylcarbamate)-based column. The impact of CSP structure and mobile phase (MP) polarity on the enantioseparation was evaluated. In addition, with the aim to unravel the functions of halogen substituents in mechanisms and noncovalent interactions underlying selector-selectand complex formation at molecular level, local electron charge density of specific molecular regions of the interacting partners were evaluated in terms of calculated electrostatic potential (V) and related source function (SF) contributions. On this basis, the impact of halogen type and position on the enantioseparation was investigated by correlating theoretical and experimental data.


Assuntos
Halogênios , Polissacarídeos , Cromatografia Líquida de Alta Pressão , Halogênios/química , Metalocenos , Polissacarídeos/química , Eletricidade Estática , Estereoisomerismo
11.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299502

RESUMO

The chemistry of f-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the Topond module (previously limited to work in terms of s-, p- and d-type basis functions only) of the Crystal program to f- and g-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, Cs2UO2Cl4, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed.

12.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064027

RESUMO

Most of TM6-cluster compounds (TM = transition metal) are soluble in polar solvents, in which the cluster units commonly remain intact, preserving the same atomic arrangement as in solids. Consequently, the redox potential is often used to characterize structural and electronic features of respective solids. Although a high lability and variety of ligands allow for tuning of redox potential and of the related spectroscopic properties in wide ranges, the mechanism of this tuning is still unclear. Crystal chemistry approach was applied for the first time to clarify this mechanism. It was shown that there are two factors affecting redox potential of a given metal couple: Lever's electrochemical parameters of the ligands and the effective ionic charge of TM, which in cluster compounds differs effectively from the formal value due to the bond strains around TM atoms. Calculations of the effective ionic charge of TMs were performed in the framework of bond valence model, which relates the valence of a bond to its length by simple Pauling relationship. It was also shown that due to the bond strains the charge depends mainly on the atomic size of the inner ligands.

13.
Oncologist ; 26(9): 740-750, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34077597

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) correlate with adverse prognosis in patients with breast, colorectal, lung, and prostate cancer. Little data are available for renal cell carcinoma (RCC). MATERIALS AND METHODS: We designed a multicenter prospective observational study to assess the correlation between CTC counts and progression-free survival (PFS) in patients with metastatic RCC treated with an antiangiogenic tyrosine kinase inhibitor as a first-line regimen; overall survival (OS) and response were secondary objectives. CTC counts were enumerated by the CellSearch system at four time points: day 0 of treatment, day 28, day 56 and then at progression, or at 12 months in the absence of progression. RESULTS: One hundred ninety-five eligible patients with a median age of 69 years were treated with sunitinib (77.5%) or pazopanib (21%). At baseline, 46.7% of patients had one or more CTCs per milliliter (range, 1 to 263). Thirty patients had at least three CTCs, with a median PFS of 5.8 versus 15 months in the remaining patients (p = .002; hazard ratio [HR], 1.99), independently of the International Metastatic RCC Database Consortium score at multivariate analysis (HR, 1.91; 95% confidence interval [CI], 1.16-3.14). Patients with at least three CTCs had a shorter estimated OS of 13.8 months versus 52.8 months in those with fewer than three CTCs (p = .003; HR, 1.99; multivariate analysis HR, 1.67; 95% CI, 0.95-2.93). Baseline CTC counts did not correlate with response; neither did having CTC sequencing counts greater than or equal to one, two, three, four, or five. CONCLUSION: We provide prospective evidence that the presence of three or more CTCs at baseline is associated with a significantly shorter PFS and OS in patients with metastatic RCC. IMPLICATIONS FOR PRACTICE: This prospective study evaluated whether the presence of circulating tumor cells (CTCs) in the peripheral blood correlates with activity of first-line tyrosine kinase inhibitors in metastatic renal cell carcinoma (RCC). This study demonstrated that almost half of patients with metastatic RCC have at least one CTC in their blood and that those patients with at least three CTCs are at increased risk of early progressive disease and early death due to RCC. Studies incorporating CTC counts in the prognostic algorithms of metastatic RCC are warranted.


Assuntos
Neoplasias da Mama , Carcinoma de Células Renais , Neoplasias Renais , Células Neoplásicas Circulantes , Idoso , Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Neoplasias Renais/tratamento farmacológico , Masculino , Prognóstico , Estudos Prospectivos
14.
ACS Nano ; 15(4): 6861-6871, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33730478

RESUMO

To study the possibility for silicene to be employed as a field-effect transistor (FET) pressure sensor, we explore the chemistry of monolayer and multilayered silicene focusing on the change in hybridization under pressure. Ab initio computations show that the effect of pressure depends greatly on the thickness of the silicene film, but also reveals the influence of real experimental conditions, where the pressure is not hydrostatic. For this purpose, we introduce anisotropic strain states. With pure uniaxial stress applied to silicene layers, a path for sp3 silicon to sp3d silicon is found, unlike with pure hydrostatic pressure. Even with mixed-mode stress (in-plane pressure half of the out-of-plane one), we find no such path. In addition to introducing our theoretical approach to study 2D materials, we show how the hybridization change of silicene under pressure makes it a good FET pressure sensor.

15.
J Phys Chem Lett ; 12(7): 1862-1868, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33577336

RESUMO

The nature of chemical bonding in actinide compounds (molecular complexes and materials) remains elusive in many respects. A thorough analysis of their electron charge distribution can prove decisive in elucidating bonding trends and oxidation states along the series. However, the accurate determination and robust analysis of the charge density of actinide compounds pose several challenges from both experimental and theoretical perspectives. Significant advances have recently been made on the experimental reconstruction and topological analysis of the charge density of actinide materials [Gianopoulos et al. IUCrJ, 2019, 6, 895]. Here, we discuss complementary advances on the theoretical side, which allow for the accurate determination of the charge density of actinide materials from quantum-mechanical simulations in the bulk. In particular, the extension of the Topond software implementing Bader's quantum theory of atoms in molecules and crystals (QTAIMAC) to f- and g-type basis functions is introduced, which allows for an effective study of lanthanides and actinides in the bulk and in vacuo, on the same grounds. Chemical bonding of the tetraphenyl phosphate uranium hexafluoride cocrystal [PPh4+][UF6-] is investigated, whose experimental charge density is available for comparison. Crystal packing effects on the charge density and chemical bonding are quantified and discussed. The methodology presented here allows reproducing all subtle features of the topology of the Laplacian of the experimental charge density. Such a remarkable qualitative and quantitative agreement represents a strong mutual validation of both approaches-experimental and computational-for charge density analysis of actinide compounds.

16.
Molecules ; 26(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406753

RESUMO

The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of regions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes of sulfur and heavy chalcogen atoms (Se, Te) (donors) can interact through their positive electrostatic potential (V) with nucleophilic partners such as lone pairs, π-clouds, and anions (acceptors). In the last few years, promising applications of ChBs in catalysis, crystal engineering, molecular biology, and supramolecular chemistry have been reported. Recently, we explored the high-performance liquid chromatography (HPLC) enantioseparation of fluorinated 3-arylthio-4,4'-bipyridines containing sulfur atoms as ChB donors. Following this study, herein we describe the comparative enantioseparation of three 5,5'-dibromo-2,2'-dichloro-3-selanyl-4,4'-bipyridines on polysaccharide-based chiral stationary phases (CSPs) aiming to understand function and potentialities of selenium σ-holes in the enantiodiscrimination process. The impact of the chalcogen substituent on enantioseparation was explored by using sulfur and non-chalcogen derivatives as reference substances for comparison. Our investigation also focused on the function of the perfluorinated aromatic ring as a π-hole donor recognition site. Thermodynamic quantities associated with the enantioseparation were derived from van't Hoff plots and local electron charge density of specific molecular regions of the interacting partners were inspected in terms of calculated V. On this basis, by correlating theoretical data and experimental results, the participation of ChBs and π-hole bonds in the enantiodiscrimination process was reasonably confirmed.


Assuntos
Calcogênios/química , Cromatografia Líquida/métodos , Compostos Heterocíclicos/química , Polissacarídeos/química , Piridinas/química , Piridinas/isolamento & purificação , Termodinâmica , Eletricidade Estática , Estereoisomerismo
17.
Molecules ; 26(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435625

RESUMO

About 70 years ago, in the framework of his theory of chemical bonding, Pauling proposed an empirical correlation between the bond valences (or effective bond orders (BOs)) and the bond lengths. Till now, this simple correlation, basic in the bond valence model (BVM), is widely used in crystal chemistry, but it was considered irrelevant for metal-metal bonds. An extensive analysis of the quantum chemistry data computed in the last years confirms very well the validity of Pauling's correlation for both localized and delocalized interactions. This paper briefly summarizes advances in the application of the BVM for compounds with TM-TM bonds (TM = transition metal) and provides further convincing examples. In particular, the BVM model allows for very simple but precise calculations of the effective BOs of the TM-TM interactions. Based on the comparison between formal and effective BOs, we can easily describe steric and electrostatic effects. A possible influence of these effects on materials stability is discussed.


Assuntos
Metais/química , Compostos Organometálicos/química , Teoria Quântica , Eletricidade Estática
18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 724-726, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017305

RESUMO

Two distinct approaches, that of energy and that of force, are adopted in quantum mechanics to get insights on chemical processes. In the second one, the net forces acting on the electrons and nuclei in a system (Ehrnefest and Hellmann-Feynman forces, respectively) are determined and a local version of the approach, in terms of force density fields rather than forces, has also been proposed for electrons. This is the path followed by Tsirelson & Stash (2020) in this issue of Acta Crystallographica Section B, to study for the first time the spatial distribution of the electronic forces of different nature acting in stable crystals. Interestingly, by relying on approximations taken from orbital-free DFT, all components of the inner-crystal force can be easily retrieved from multipole-model refined experimental electron densities and their derivatives. No less important is that these calculations are becoming easily doable for any X-ray density crystallographer thanks to a new version of the computer program WinXPRO, purposely developed in the study which is discussed in this commentary.

19.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992941

RESUMO

Positive electrostatic potential (V) values are often associated with σ- and π-holes, regions of lower electron density which can interact with electron-rich sites to form noncovalent interactions. Factors impacting σ- and π-holes may thus be monitored in terms of the shape and values of the resulting V. Further precious insights into such factors are obtained through a rigorous decomposition of the V values in atomic or atomic group contributions, a task here achieved by extending the Bader-Gatti source function (SF) for the electron density to V. In this article, this general methodology is applied to a series of 4,4'-bipyridine derivatives containing atoms from Groups VI (S, Se) and VII (Cl, Br), and the pentafluorophenyl group acting as a π-hole. As these molecules are characterized by a certain degree of conformational freedom due to the possibility of rotation around the two C-Ch bonds, from two to four conformational motifs could be identified for each structure through conformational search. On this basis, the impact of chemical and conformational features on σ- and π-hole regions could be systematically evaluated by computing the V values on electron density isosurfaces (VS) and by comparing and dissecting in atomic/atomic group contributions the VS maxima (VS,max) values calculated for different molecular patterns. The results of this study confirm that both chemical and conformational features may seriously impact σ- and π-hole regions and provide a clear analysis and a rationale of why and how this influence is realized. Hence, the proposed methodology might offer precious clues for designing changes in the σ- and π-hole regions, aimed at affecting their potential involvement in noncovalent interactions in a desired way.


Assuntos
Modelos Moleculares , Piridinas/química , Conformação Molecular
20.
Molecules ; 25(15)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748885

RESUMO

Despite its role in spin density functional theory and it being the basic observable for describing and understanding magnetic phenomena, few studies have appeared on the electron spin density subtleties thus far. A systematic full topological analysis of this function is lacking, seemingly in contrast to the blossoming in the last 20 years of many studies on the topological features of other scalar fields of chemical interest. We aim to fill this gap by unveiling the kind of information hidden in the spin density distribution that only its topology can disclose. The significance of the spin density critical points, the 18 different ways in which they can be realized and the peculiar topological constraints on their number and kind, arising from the presence of positive and negative spin density regions, is addressed. The notion of molecular spin graphs, spin maxima (minima) joining paths, spin basins and of their valence is introduced. We show that two kinds of structures are associated with a spin-polarized molecule: the usual one, defined through the electron density gradient, and the magnetic structure, defined through the spin density gradient and composed in general by at least two independent spin graphs, related to spin density maxima and minima. Several descriptors, such as the spin polarization index, are introduced to characterize the properties of spin density critical points and basins. The study on the general features of the spin density topology is followed by the specific example of the water molecule in the 3B1 triplet state, using spin density distributions of increasing accuracy.


Assuntos
Teoria da Densidade Funcional , Elétrons , Modelos Químicos , Algoritmos , Modelos Teóricos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...