Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794042

RESUMO

A rugged handheld sensor for rapid in-field classification of cannabis samples based on their THC content using ultra-compact near-infrared spectrometer technology is presented. The device is designed for use by the Austrian authorities to discriminate between legal and illegal cannabis samples directly at the place of intervention. Hence, the sensor allows direct measurement through commonly encountered transparent plastic packaging made from polypropylene or polyethylene without any sample preparation. The measurement time is below 20 s. Measured spectral data are evaluated using partial least squares discriminant analysis directly on the device's hardware, eliminating the need for internet connectivity for cloud computing. The classification result is visually indicated directly on the sensor via a colored LED. Validation of the sensor is performed on an independent data set acquired by non-expert users after a short introduction. Despite the challenging setting, the achieved classification accuracy is higher than 80%. Therefore, the handheld sensor has the potential to reduce the number of unnecessarily confiscated legal cannabis samples, which would lead to significant monetary savings for the authorities.


Assuntos
Cannabis , Espectroscopia de Luz Próxima ao Infravermelho , Cannabis/química , Cannabis/classificação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Discriminante , Análise dos Mínimos Quadrados , Humanos , Dronabinol/análise
2.
Sci Rep ; 13(1): 281, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609672

RESUMO

In this contribution, we demonstrate a wide-field hyperspectral mid-infrared (MIR) microscope based on multidimensional single-pixel imaging (SPI). The microscope employs a high brightness MIR supercontinuum source for broadband (1.55 [Formula: see text]-4.5 [Formula: see text]) sample illumination. Hyperspectral imaging capability is achieved by a single micro-opto-electro-mechanical digital micromirror device (DMD), which provides both spatial and spectral differentiation. For that purpose the operational spectral bandwidth of the DMD was significantly extended into the MIR spectral region. In the presented design, the DMD fulfills two essential tasks. On the one hand, as standard for the SPI approach, the DMD sequentially masks captured scenes enabling diffraction-limited imaging in the tens of millisecond time-regime. On the other hand, the diffraction at the micromirrors leads to dispersion of the projected field and thus allows for wavelength selection without the application of additional dispersive optical elements, such as gratings or prisms. In the experimental part, first of all, the imaging and spectral capabilities of the hyperspectral microscope are characterized. The spatial and spectral resolution is assessed by means of test targets and linear variable filters, respectively. At a wavelength of 4.15 [Formula: see text] a spatial resolution of 4.92 [Formula: see text] is achieved with a native spectral resolution better than 118.1 nm. Further, a post-processing method for drastic enhancement of the spectral resolution is proposed and discussed. The performance of the MIR hyperspectral microsopce is demonstrated for label-free chemical imaging and examination of polymer compounds and red blood cells. The acquisition and reconstruction of Hadamard sampled 64 [Formula: see text] 64 images is achieved in 450 ms and 162 ms, respectively. Thus, combined with an unprecedented intrinsic flexibiliy gained by a tunable field of view and adjustable spatial resolution, the demonstrated design drastically improves the sample throughput in MIR chemical and biomedical imaging.


Assuntos
Microscopia , Dispositivos Ópticos , Iluminação , Desenho de Equipamento
3.
Opt Express ; 30(4): 5222-5254, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209491

RESUMO

Supercontinuum sources are all-fiber pulsed laser-driven systems that provide high power spectral densities within ultra-broadband spectral ranges. The tailored process of generating broadband, bright, and spectrally flat supercontinua-through a complex interplay of linear and non-linear processes-has been recently pushed further towards longer wavelengths and has evolved enough to enter the field of mid-infrared (mid-IR) spectroscopy. In this work, we review the current state and perspectives of this technology that offers laser-like emission properties and instantaneous broadband spectral coverage comparable to thermal emitters. We aim to go beyond a literature review. Thus, we first discuss the basic principles of supercontinuum sources and then provide an experimental part focusing on the quantification and analysis of intrinsic emission properties such as typical power spectral densities, brightness levels, spectral stability, and beam quality (to the best of the authors' knowledge, the M2 factor for a mid-IR supercontinuum source is characterized for the first time). On this basis, we identify key competitive advantages of these alternative emitters for mid-IR spectroscopy over state-of-the-art technologies such as thermal sources or quantum cascade lasers. The specific features of supercontinuum radiation open up prospects of improving well-established techniques in mid-IR spectroscopy and trigger developments of novel analytical methods and instrumentation. The review concludes with a structured summary of recent advances and applications in various routine mid-IR spectroscopy scenarios that have benefited from the use of supercontinuum sources.

4.
Opt Express ; 30(4): 6440-6449, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209582

RESUMO

We present a mid-infrared spectroscopic system based on a spectral-coding approach enabled by a modified digital micromirror device (DMD). A supercontinuum source offering a confined mid-infrared laser beam is employed to perform gas measurements with this system. The performance, flexibility, and programmability enabled by the DMD is experimentally demonstrated by gas-cell measurements (CO2, CH4, N2O, NO2 and CO). Full spectra are acquired in 14 ms at 10 nm spectral resolution and in 3.5 ms at 40 nm spectral resolution. Further, we employ the system for stand-off open-path spatially resolved CO2 measurements that fully exploit the laser emission properties - the bright and highly-collimated supercontinuum beam is scanned by a galvo mirror over a retroreflector array at a scalable remote distance. The measurement concept models a passing gas emitter under lab conditions; time and spatially resolved CO2 absorbance gas-plume images in the mid-infrared range are obtained.

5.
Opt Lett ; 46(22): 5541, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780398

RESUMO

We present an erratum to our Letter [Opt. Lett.46, 4108 (2021)OPLEDP0146-959210.1364/OL.434855] and make a correction to the labeling of the absorption bands (reversed order for CH vibrations) indicated in Fig. 2(a). This does not change the scientific conclusions of the original Letter.

6.
Opt Lett ; 46(17): 4108-4111, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469951

RESUMO

We report on a technically simple approach to achieve high-resolution and high-sensitivity Fourier-domain optical coherence tomography (OCT) imaging in the mid-infrared (mid-IR) range. The proposed OCT system employs an InF3 supercontinuum source. A specially designed dispersive scanning spectrometer based on a single InAsSb point detector is employed for detection. The spectrometer enables structural OCT imaging in the spectral range from 3140 nm to 4190 nm with a characteristic sensitivity of over 80 dB and an axial resolution below 8µm. The capabilities of the system are demonstrated for imaging of porous ceramic samples and transition-stage green parts fabricated using an emerging method of lithography-based ceramic manufacturing. Additionally, we demonstrate the performance and flexibility of the system by OCT imaging using an inexpensive low-power (average power of 16 mW above 3µm wavelength) mid-IR supercontinuum source.

7.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451004

RESUMO

In this contribution, we present a high-speed, multiplex, grating spectrometer based on a spectral coding approach that is founded on principles of compressive sensing. The spectrometer employs a single-pixel InGaAs detector to measure the signals encoded by an amplitude spatial light modulator (digital micromirror device, DMD). This approach leads to a speed advantage and multiplex sensitivity advantage atypical for standard dispersive systems. Exploiting the 18.2 kHz pattern rate of the DMD, we demonstrated 4.2 ms acquisition times for full spectra with a bandwidth of 450 nm (5250-4300 cm-1; 1.9-2.33 µm). Due to the programmability of the DMD, spectral regions of interest can be chosen freely, thus reducing acquisition times further, down to the sub-millisecond regime. The adjustable resolving power of the system accessed by means of computer simulations is discussed, quantified for different measurement modes, and verified by comparison with a state-of-the-art Fourier-transform infrared spectrometer. We show measurements of characteristic polymer absorption bands in different operation regimes of the spectrometer. The theoretical multiplex advantage of 8 was experimentally verified by comparison of the noise behavior of the spectral coding approach and a standard line-scan approach.

8.
Opt Express ; 28(6): 7858-7874, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225421

RESUMO

Recent developments and commercial availability of low-noise and bright infrared (IR) supercontinuum sources initiated intensive applied research in the last few years. Covering a significant part of near- and mid-infrared spectral ranges, supercontinuum radiation opened up unique possibilities and alternatives for the well-established imaging technique of optical coherence tomography (OCT). In this contribution, we demonstrate the development, performance, and maturity of a cost-efficient dual-band Fourier-domain IR OCT system (2 µm and 4 µm central wavelengths). The proposed OCT setup is elegantly employing a single supercontinuum source and a pyroelectric linear array. We discuss adapted application-oriented approaches to signal acquisition and post-processing when thermal detectors are applied in interferometers. In the experimental part, the efficiency of the dual-band detection is evaluated. Practical results and direct comparisons of the OCT system operating within the employed sub-bands are exhibited and discussed. Furthermore, we introduce the 2 µm OCT sub-system as an affordable alternative for art diagnosis; therefore, high resolution and sensitive measurements of the painting mock-ups are presented. Finally, potentials of the dual-band detection are demonstrated for lithography-based manufactured industrial ceramics.

9.
Opt Express ; 27(9): 12666-12672, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052805

RESUMO

We introduce a compressive sensing based approach for single pixel hyperspectral chemical imaging in a broad spectral range in the near-infrared. Fully integrated MEMS based Fabry-Pérot tunable filter spectrometers and a digital micro-mirror device were employed to achieve spectral and spatial resolution, respectively. The available spectral range from 1500 to 2200 nm covers molecular overtone vibrations enabling chemical identification. Hyperspectral images of different adhesives deposited on a textile were recorded revealing their chemical composition. Furthermore, spectrally resolved near-infrared images with compression rates up to 90% are presented. The approach of single pixel imaging illustrates a promising technology for the infrared spectral range superior to conventionally used costly focal plane arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...