Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 117057, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38976957

RESUMO

Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.

2.
J Biol Chem ; 300(6): 107330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679329

RESUMO

The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 µM and a potency (EC50) of 8 µM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.


Assuntos
Receptor CB2 de Canabinoide , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/química , Humanos , Ligantes , Ciclotídeos/química , Ciclotídeos/farmacologia , Células HEK293 , Descoberta de Drogas
3.
Drug Discov Today ; 28(5): 103554, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921670

RESUMO

Cell migration is a key physiological process in the development and homeostasis of multicellular organisms; errors in this complex system can trigger the development of cancer or inflammatory disorders. Therefore, modulating cell migration provides opportunities for drug discovery. Peptides are gaining importance on the global therapeutics market, given their unique properties compared with established small-molecule drugs or biologics. In this review, we identified over 470 peptides modulating cell migration and analyzed their characteristics. Over 95% of these peptides are in the discovery or preclinical stage, because the transition of peptide hits into drug leads often results in a bottleneck in the development process. We summarize chemical strategies in (pre-)clinical development to enhance drug-like properties of bioactive peptides.


Assuntos
Neoplasias , Peptídeos , Humanos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Movimento Celular
4.
Biomed Pharmacother ; 153: 113486, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076504

RESUMO

Ribosomally synthesized and post-translationally modified peptides, such as plant cyclotides, are a diverse group of natural products well known as templates in drug discovery and therapeutic lead development. The cyclotide kalata B1 (kB1) has previously been discovered as immunosuppressive agent on T-lymphocytes, and a synthetic version of this peptide, [T20K]kB1 (T20K), has been effective in reducing clinical symptoms, such as inflammation and demyelination, in a mouse model of multiple sclerosis. Based on its T-cell modulatory impact we studied the effects of T20K and several analogs on the proliferation of anaplastic large cell lymphoma (ALCL), a heterogeneous group of clinically aggressive diseases associated with poor prognosis. T20K, as a prototype drug candidate, induces apoptosis and a proliferation arrest in human lymphoma T-cell lines (SR786, Mac-2a and the Jurkat E6.1) in a concentration dependent fashion, at least partially via increased STAT5 and p53 signaling. In contrary to its effect on IL-2 signaling in lymphocytes, the cytokine levels are not altered in lymphoma cells. In vivo mouse experiments revealed a promising activity of T20K on these cancer cells including decreased tumor weight and increased apoptosis. This study opens novel avenues for developing cyclotide-based drug candidates for therapy of patients with ALCL.


Assuntos
Ciclotídeos , Linfoma Anaplásico de Células Grandes , Animais , Ciclotídeos/farmacologia , Citocinas/farmacologia , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Camundongos , Linfócitos T
5.
Methods Mol Biol ; 2384: 221-229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34550577

RESUMO

Bioluminescence resonance energy transfer (BRET) is a cutting-edge biophysical technique used for exploring G protein-coupled receptor (GPCR) pharmacology. BRET relies on the nonradiative energy transfer from a luciferase energy donor to an acceptor fluorophore after oxidation of a luciferase substrate. This energy transfer occurs only if the donor and acceptor are within close proximity. Over the past few years, BRET has been successfully applied to study GPCR oligomerization as well as interactions of receptors with G proteins, G protein-coupled receptor kinases (GRKs), or ß-arrestins. Herein, we describe how BRET can be applied to study signaling at the oxytocin receptor (OTR) and vasopressin receptors, thereby enabling the identification of (biased) ligands and molecular probes for investigating receptor functionality.


Assuntos
Transferência de Energia , Células HEK293 , Humanos , Luciferases , Medições Luminescentes , Ocitocina , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Vasopressinas/genética , beta-Arrestina 1 , beta-Arrestinas/metabolismo
6.
J Nat Prod ; 84(8): 2238-2248, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34308635

RESUMO

Cyclotides are plant-derived disulfide-rich peptides comprising a cyclic cystine knot, which confers remarkable stability against thermal, proteolytic, and chemical degradation. They represent an emerging class of G protein-coupled receptor (GPCR) ligands. In this study, utilizing a screening approach of plant extracts and pharmacological analysis we identified cyclotides from Carapichea ipecacuanha to be ligands of the κ-opioid receptor (KOR), an attractive target for developing analgesics with reduced side effects and therapeutics for multiple sclerosis (MS). This prompted us to verify whether [T20K]kalata B1, a cyclotide in clinical development for the treatment of MS, is able to modulate KOR signaling. T20K bound to and fully activated KOR in the low µM range. We then explored the ability of T20K to allosterically modulate KOR. Co-incubation of T20K with KOR ligands resulted in positive allosteric modulation in functional cAMP assays by altering either the efficacy of dynorphin A1-13 or the potency and efficacy of U50,488 (a selective KOR agonist), respectively. In addition, T20K increased the basal response upon cotreatment with U50,488. In the bioluminescence resonance energy transfer assay T20K negatively modulated the efficacy of U50,488. This study identifies cyclotides capable of modulating KOR and highlights the potential of plant-derived peptides as an opportunity to develop cyclotide-based KOR modulators.


Assuntos
Ciclotídeos/farmacologia , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos , Cephaelis/química , Células HEK293 , Humanos , Ligantes , Extratos Vegetais/química
7.
Front Pharmacol ; 12: 707596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322026

RESUMO

Traditional medicine and the use of herbal remedies are well established in the African health care system. For instance, Violaceae plants are used for antimicrobial or anti-inflammatory applications in folk medicine. This study describes the phytochemical analysis and bioactivity screening of four species of the violet tribe Allexis found in Cameroon. Allexis cauliflora, Allexis obanensis, Allexis batangae and Allexis zygomorpha were evaluated for the expression of circular peptides (cyclotides) by mass spectrometry. The unique cyclic cystine-rich motif was identified in several peptides of all four species. Knowing that members of this peptide family are protease inhibitors, the plant extracts were evaluated for the inhibition of human prolyl oligopeptidase (POP). Since all four species inhibited POP activity, a bioactivity-guided fractionation approach was performed to isolate peptide inhibitors. These novel cyclotides, alca 1 and alca 2 exhibited IC50 values of 8.5 and 4.4 µM, respectively. To obtain their amino acid sequence information, combinatorial enzymatic proteolysis was performed. The proteolytic fragments were evaluated in MS/MS fragmentation experiments and the full-length amino acid sequences were obtained by de novo annotation of fragment ions. In summary, this study identified inhibitors of the human protease POP, which is a drug target for inflammatory or neurodegenerative disorders.

8.
Sci Rep ; 9(1): 19295, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848378

RESUMO

The neuropeptides oxytocin (OT) and vasopressin (VP) and their G protein-coupled receptors OTR, V1aR, V1bR, and V2R form an important and widely-distributed neuroendocrine signaling system. In mammals, this signaling system regulates water homeostasis, blood pressure, reproduction, as well as social behaviors such as pair bonding, trust and aggression. There exists high demand for ligands with differing pharmacological profiles to study the physiological and pathological functions of the individual receptor subtypes. Here, we present the pharmacological characterization of an arthropod (Metaseiulus occidentalis) OT/VP-like nonapeptide across the human OT/VP receptors. I8-arachnotocin is a full agonist with respect to second messenger signaling at human V2R (EC50 34 nM) and V1bR (EC50 1.2 µM), a partial agonist at OTR (EC50 790 nM), and a competitive antagonist at V1aR [pA2 6.25 (558 nM)]. Intriguingly, I8-arachnotocin activated the Gαs pathway of V2R without recruiting either ß-arrestin-1 or ß-arrestin-2. I8-arachnotocin might thus be a novel pharmacological tool to study the (patho)physiological relevance of ß-arrestin-1 or -2 recruitment to the V2R. These findings furthermore highlight arthropods as a novel, vast and untapped source for the discovery of novel pharmacological probes and potential drug leads targeting neurohormone receptors.


Assuntos
Artrópodes/química , Neuropeptídeos/agonistas , Receptores de Vasopressinas/agonistas , Vasopressinas/agonistas , Animais , Proteínas de Ligação ao GTP/agonistas , Humanos , Ligantes , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Ocitocina/agonistas , Ocitocina/química , Ocitocina/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores de Vasopressinas/química , Transdução de Sinais/genética , Vasopressinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...