Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38659800

RESUMO

In order to forage for food, many animals regulate not only specific limb movements but the statistics of locomotor behavior over time, for example switching between long-range dispersal behaviors and more localized search depending on the availability of resources. How pre-motor circuits regulate such locomotor statistics is not clear. Here we took advantage of the robust changes in locomotor statistics evoked by attractive odors in walking Drosophila to investigate their neural control. We began by analyzing the statistics of ground speed and angular velocity during three well-defined motor regimes: baseline walking, upwind running during odor, and search behavior following odor offset. We find that during search behavior, flies adopt higher angular velocities and slower ground speeds, and tend to turn for longer periods of time in one direction. We further find that flies spontaneously adopt periods of different mean ground speed, and that these changes in state influence the length of odor-evoked runs. We next developed a simple physiologically-inspired computational model of locomotor control that can recapitulate these statistical features of fly locomotion. Our model suggests that contralateral inhibition plays a key role both in regulating the difference between baseline and search behavior, and in modulating the response to odor with ground speed. As the fly connectome predicts decussating inhibitory neurons in the lateral accessory lobe (LAL), a pre-motor structure, we generated genetic tools to target these neurons and test their role in behavior. Consistent with our model, we found that activation of neurons labeled in one line increased curvature. In a second line labeling distinct neurons, activation and inactivation strongly and reciprocally regulated ground speed and altered the length of the odor-evoked run. Additional targeted light activation experiments argue that these effects arise from the brain rather than from neurons in the ventral nerve cord, while sparse activation experiments argue that speed control in the second line arises from both LAL neurons and a population of neurons in the dorsal superior medial protocerebrum (SMP). Together, our work develops a biologically plausible computational architecture that captures the statistical features of fly locomotion across behavioral states and identifies potential neural substrates of these computations.

2.
Curr Biol ; 34(3): 473-488.e6, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181792

RESUMO

Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic programs for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects, which governs many higher-order behaviors and largely derives from a small number of type II neural stem cells (NSCs). Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in type II NSCs, plays a role in specifying essential components of CX olfactory navigation circuitry. We show the following: (1) that multiple components of olfactory navigation circuitry arise from type II NSCs. (2) Manipulating Imp expression in type II NSCs alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body (FB). (3) Imp regulates the specification of Tachykinin-expressing ventral FB input neurons. (4) Imp is required in type II NSCs for establishing proper morphology of the CX neuropil structures. (5) Loss of Imp in type II NSCs abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our findings establish that a temporally expressed gene can regulate the expression of a complex behavior by developmentally regulating the specification of multiple circuit components and provides a first step toward a developmental dissection of the CX and its roles in behavior.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Células-Tronco Neurais , Proteínas de Ligação a RNA , Olfato , Navegação Espacial , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia
3.
bioRxiv ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398350

RESUMO

Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic prograssms for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects that governs many higher order behaviors and largely derives from a small number of Type II neural stem cells. Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in Type II neural stem cells, specifies components of CX olfactory navigation circuitry. We show: (1) that multiple components of olfactory navigation circuitry arise from Type II neural stem cells and manipulating Imp expression in Type II neural stem cells alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body. (2) Imp regulates the specification of Tachykinin expressing ventral fan-shaped body input neurons. (3) Imp in Type II neural stem cells alters the morphology of the CX neuropil structures. (4) Loss of Imp in Type II neural stem cells abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our work establishes that a single temporally expressed gene can regulate the expression of a complex behavior through the developmental specification of multiple circuit components and provides a first step towards a developmental dissection of the CX and its roles in behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...