Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 877: 162943, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934933

RESUMO

Growing Sphagnum on rewetted bogs (=Sphagnum paludiculture) is an alternative to drainage-based land use because it retains its value as productive land while mitigating greenhouse gas (GHG) emissions. However, studies on GHG exchange covering the full production system and cycle are missing. Here, we combined data of the establishment phase with newly recorded data of a 7-year old Sphagnum paludiculture site in Germany including partial Sphagnum harvest. GHGs were measured with closed chambers at all elements of the system (production fields, ditches, causeways). Over the full production cycle, the production fields were GHG sinks with -3.2 ± 4.2 t ha-1 a-1 (in CO2-eq), while ditches represented sources emitting 13.8 ± 11.5 t ha-1 a-1. New measurements on the causeway indicated that it was a stronger GHG source with 29.3 ± 9.8 t ha-1 a-1 than previously assumed from literature values. Corrected for the area share of its elements and including the partial Sphagnum harvest (in dry mass) of ~13.8 ± 0.6 t ha-1 (=average 7-year CO2 emissions of 3.3 ± 0.1 t ha-1 a-1), the site was a GHG source of 10.7 ± 4.6 t ha-1 a-1, thus reducing emissions by ~20 t ha-1 a-1 compared to the German emission factor for grassland on drained organic soils. Per ton harvested dry biomass, the paludiculture site emitted 9.9 ± 4.6 t of CO2-eq. The causeways were the major contributor to the warming, calling for reducing causeway area in Sphagnum paludicultures. Future 'best-practice' could realistically comprise areal shares of 80 % production fields, 5 % ditches, 15 % causeways and a full Sphagnum harvest with the uppermost 5 cm remaining on site for recovery. In this scenario the site would emit CO2-eq emissions of 4.3 ± 1.9 t ha-1 a-1 or 0.9 ± 2.1 t per ton harvested dry mass.


Assuntos
Gases de Efeito Estufa , Sphagnopsida , Gases de Efeito Estufa/análise , Áreas Alagadas , Dióxido de Carbono/análise , Pradaria , Metano/análise , Solo , Alemanha , Óxido Nitroso/análise
2.
FEMS Microbiol Ecol ; 96(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33016319

RESUMO

The drainage of peatlands for their agricultural use leads to huge emissions of greenhouse gases. One sustainable alternative is the cultivation of peat mosses after rewetting ('Sphagnum farming'). Environmental parameters of such artificial systems may differ from those of natural Sphagnum ecosystems which host a rich fungal community. We studied the fungal community at a 4 ha Sphagnum farming field site in Northwestern Germany and compared it with that of natural Sphagnum ecosystems. Additionally, we asked if any fungi occur with potentially negative consequences for the commercial production and/or use of Sphagnum biomass. Samples were collected every 3 months within 1 year. High-throughput sequencing of the fungal ITS2 barcode was used to obtain a comprehensive community profile of the fungi. The dominant taxa in the fungal community of the Sphagnum farming field site were all commonly reported from natural Sphagnum ecosystems. While the taxonomic composition showed clear differences between seasons, a stable functional community profile was identified across seasons. Additionally, nutrient supply seems to affect composition of fungal community. Despite a rather high abundance of bryophyte parasites, and the occurrence of both Sphagnum-species-specific and general plant pathogens, their impact on the productivity and usage of Sphagnum biomass as raw material for growing media was considered to be low.


Assuntos
Micobioma , Sphagnopsida , Agricultura , Ecossistema , Fungos/genética , Alemanha
3.
Sci Total Environ ; 726: 138470, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315847

RESUMO

The agricultural use of drained peatlands leads to huge emissions of greenhouse gases and nutrients. A land-use alternative that allows rewetting of drained peatland while maintaining agricultural production is the cultivation of Sphagnum biomass as a renewable substitute for fossil peat in horticultural growing media (Sphagnum farming). We studied Sphagnum productivity and nutrient dynamics during two years in two Sphagnum farming sites in NW Germany, which were established on drained bog grassland by sod removal, rewetting, and the introduction of Sphagnum fragments in 2011 and 2016, respectively. We found a considerable and homogeneous production of Sphagnum biomass (>3.6 ton DW ha--1 yr-1), attributable to the high nutrient levels, low alkalinity, and even distribution of the irrigation water. The ammonium legacy from former drainage-based agriculture rapidly declined after rewetting, while nutrient mobilization was negligible. CH4 concentrations in the rewetted soil quickly decreased to very low levels. The Sphagnum biomass sequestered high loads of nutrients (46.0 and 47.4 kg N, 3.9 and 4.9 kg P, and 9.8 and 16.1 kg K ha-1 yr-1 in the 7.5 y and 2.5 y old sites, respectively), preventing off-site eutrophication. We conclude that Sphagnum farming as an alternative for drainage-based peatland agriculture may contribute effectively to tackling environmental challenges such as local and regional downstream pollution and global climate change.


Assuntos
Sphagnopsida , Agricultura , Alemanha , Pradaria , Nutrientes , Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...