Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Genet ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782642

RESUMO

Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.

2.
Mol Aspects Med ; 88: 101157, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36459837

RESUMO

Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.


Assuntos
Oftalmopatias , Proteostase , Humanos , Envelhecimento/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Autofagia
3.
Eur J Clin Microbiol Infect Dis ; 41(6): 893-906, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35508741

RESUMO

Precise and timely detection of tuberculosis (TB) is crucial to reduce transmission. This study aims to assess the accuracy of Xpert MTB/RIF Ultra on stool samples and systematically review the performance of Xpert MTB/RIF Ultra with different sample types by meta-analysis. Stool samples of smear-negative pulmonary TB (PTB), cervical lymph node TB, and abdominal TB patients were tested on the Xpert MTB/RIF Ultra system. Meta-analysis was performed on a set of 44 studies. Data were grouped by sample type, and the pooled sensitivity and specificity of Xpert MTB/RIF Ultra were calculated. The sensitivity of Xpert MTB/RIF Ultra with stool samples was 100% for smear-negative PTB, 27.27% for cervical lymph node TB, and 50% for abdominal TB patients, with 100% specificity for all included TB groups. The summary estimate for all PTB samples showed 84.2% sensitivity and 94.5% specificity, and EPTB samples showed 88.6% sensitivity and 96.4% specificity. Among all sample types included in our meta-analysis, urine showed the best performance for EPTB diagnosis. This pilot study supports the use of stool as an alternative non-invasive sample on Xpert MTB/RIF Ultra for rapid testing, suitable for both PTB and EPTB diagnosis.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose , Antibióticos Antituberculose/farmacologia , Farmacorresistência Bacteriana , Humanos , Mycobacterium tuberculosis/genética , Projetos Piloto , Rifampina , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/diagnóstico
4.
mSystems ; 6(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468705

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are conserved genetic elements in many prokaryotes, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Although knowledge of CRISPR locus variability has been utilized in M. tuberculosis strain genotyping, its evolutionary path in Mycobacteriaceae is not well understood. In this study, we have performed a comparative analysis of 141 mycobacterial genomes and identified the exclusive presence of the CRISPR-Cas type III-A system in M. tuberculosis complex (MTBC). Our global phylogenetic analysis of CRISPR repeats and Cas10 proteins offers evidence of horizontal gene transfer (HGT) of the CRISPR-Cas module in the last common ancestor of MTBC and Mycobacterium canettii from a Streptococcus-like environmental bacterium. Additionally, our results show that the variation of CRISPR-Cas organization in M. tuberculosis lineages, especially in the Beijing sublineage of lineage 2, is due to the transposition of insertion sequence IS6110 The direct repeat (DR) region of the CRISPR-Cas locus acts as a hot spot for IS6110 insertion. We show in M. tuberculosis H37Rv that the repeat at the 5' end of CRISPR1 of the forward strand is an atypical repeat made up partly of IS-terminal inverted repeat and partly CRISPR DR. By tracing an undetectable spacer sequence in the DR region, the two CRISPR loci could theoretically be joined to reconstruct the ancestral single CRISPR-Cas locus organization, as seen in M. canettii This study retracing the evolutionary events of HGT and IS6110-driven genomic deletions helps us to better understand the strain-specific variations in M. tuberculosis lineages.IMPORTANCE Comparative genomic analysis of prokaryotes has led to a better understanding of the biology of several pathogenic microorganisms. One such clinically important pathogen is M. tuberculosis, the leading cause of bacterial infection worldwide. Recent evidence on the functionality of the CRISPR-Cas system in M. tuberculosis has brought back focus on these conserved genetic elements, present in many prokaryotes. Our study advances understanding of mycobacterial CRISPR-Cas origin and its diversity among the different species. We provide phylogenetic evidence of acquisition of CRISPR-Cas type III-A in the last common ancestor shared between MTBC and M. canettii, by HGT-mediated events. The most likely source of HGT was an environmental Firmicutes bacterium. Genomic mapping of the CRISPR loci showed the IS6110 transposition-driven variations in M. tuberculosis strains. Thus, this study offers insights into events related to the evolution of CRISPR-Cas in M. tuberculosis lineages.

5.
Biochem J ; 477(23): 4473-4489, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175092

RESUMO

Post-translational modifications such as phosphorylation, nitrosylation, and pupylation modulate multiple cellular processes in Mycobacterium tuberculosis. While protein methylation at lysine and arginine residues is widespread in eukaryotes, to date only two methylated proteins in Mtb have been identified. Here, we report the identification of methylation at lysine and/or arginine residues in nine mycobacterial proteins. Among the proteins identified, we chose MtrA, an essential response regulator of a two-component signaling system, which gets methylated on multiple lysine and arginine residues to examine the functional consequences of methylation. While methylation of K207 confers a marginal decrease in the DNA-binding ability of MtrA, methylation of R122 or K204 significantly reduces the interaction with the DNA. Overexpression of S-adenosyl homocysteine hydrolase (SahH), an enzyme that modulates the levels of S-adenosyl methionine in mycobacteria decreases the extent of MtrA methylation. Most importantly, we show that decreased MtrA methylation results in transcriptional activation of mtrA and sahH promoters. Collectively, we identify novel methylated proteins, expand the list of modifications in mycobacteria by adding arginine methylation, and show that methylation regulates MtrA activity. We propose that protein methylation could be a more prevalent modification in mycobacterial proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Metilação , Mycobacterium tuberculosis/genética
6.
Sci Rep ; 10(1): 7102, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345991

RESUMO

Timely diagnosis of paucibacillary tuberculosis (TB) which includes smear-negative pulmonary TB (PTB) and extra-pulmonary TB (EPTB) remains a challenge. This study was performed to assess the diagnostic utility of stool as a specimen of choice for detection of mycobacterial DNA in paucibacillary TB patients in a TB-endemic setting. Stool samples were collected from 246 subjects including 129 TB patients (62 PTB and 67 EPTB) recruited at TB hospital in Delhi, India. Diagnostic efficacy of stool IS6110 PCR (n = 228) was measured, using microbiologically/clinically confirmed TB as the reference standard. The clinical sensitivity of stool PCR was 97.22% (95% confidence interval (CI), 85.47-99.93) for detection of Mycobacterium tuberculosis in stool samples of smear-positive PTB patients and 76.92% (CI, 56.35-91.03) in samples from smear-negative PTB patients. Overall sensitivity of PCR for EPTB was 68.66% (CI, 56.16-79.44), with the highest sensitivity for stool samples from patients with lymph node TB (73.5%), followed by abdominal TB (66.7%) and pleural effusion (56.3%). Stool PCR presented a specificity of 95.12%. The receiver operating characteristic curve also indicated the diagnostic utility of stool PCR in TB detection (AUC: 0.882). The performance characteristic of the molecular assay suggests that stool DNA testing has clinical value in detection of TB.


Assuntos
Fezes/microbiologia , Mycobacterium tuberculosis , Tuberculose Pulmonar/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Índia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia
7.
Indian J Microbiol ; 60(1): 26-36, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32089571

RESUMO

The gut microbiome analysis, with specific interest on their direct impact towards the human health, is currently revolutionizing the unexplored frontiers of the pathogenesis and wellness. Although in-depth investigations of gut microbiome, 'the Black Boxes', complexities and functionalities are yet at its infancy, profound evidences are being reported for their concurrent involvement in disease etiology and its treatment. Interestingly, studies from the 'minimal murine' (Oligo-MM12), 'humanized' microbiota gnotobiotic mice models and patient samples, combined with multi-omics and cell biology approaches, have been revealing the implications of these findings in the treatment of gut dysbiosis associated diseases. Nonetheless, due to the inherent heterogeneity of the gut commensals and their unified co-existence with opportunistic pathobionts, it is utmost essential to highlight their functionalities in 'good or bad' gut in human wellness. We have specifically reviewed dietary lifestyle and infectious diseases linked with the gut bacterial consortia to delineate the ecobiotic approaches towards their treatment. This notably includes gut mucosal immunity mediated diseases such as Tuberculosis, IBD, CDI, Type 2 Diabetes, etc. Alongside of each dysbiosis, we have described the current therapeutic advancements of the pre- and probiotics derived from human microbiome studies to restore gut microbial homeostasis. With a continuous running debate on the role of microbiota in above mentioned diseases, we have collected numerous scientific evidences highlighting a previously unanticipated complex involvement of gut microbiome in the potential of human health.

8.
Indian J Microbiol ; 59(4): 482-489, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31762512

RESUMO

Metagenomics is the study of gene pool of an entire community in a particular niche. This provides valuable information about the functionality of host-microbe interaction in a biological ecosystem. Efficient metagenomic DNA extraction is a critical pre-requisite for a successful sequencing run in a metagenomic study. Although isolation of human stool metagenomic DNA is fairly standardized, the same protocol does not work as efficiently in fecal DNA from other organisms. In this study, we report a comparison of manual and commercial DNA extraction methods for diverse samples such as human stool, fish gut and soil. Fishes are known to have variable microbial diversity based on their food habits, so the study included two different varieties of fishes. A modified protocol for effective isolation of metagenomic DNA from human milk samples is also reported, highlighting critical precautions. Recent studies have emphasized the importance of studying functionality of human milk metagenome to understand its influence on infants' health. While manual method works well with most samples and therefore can be a method of choice for testing new samples, broad-range commercial kit offers advantage of high purity and quality. DNA extraction of different samples would go a long way in unraveling the unexplored association between microbes and host in a biological system.

9.
J Biol Chem ; 294(22): 8930-8941, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30952697

RESUMO

Bacillus anthracis is the causative agent of anthrax in humans, bovine, and other animals. B. anthracis pathogenesis requires differentiation of dormant spores into vegetative cells. The spores inherit cellular components as phenotypic memory from the parent cell, and this memory plays a critical role in facilitating the spores' revival. Because metabolism initiates at the beginning of spore germination, here we metabolically reprogrammed B. anthracis cells to understand the role of glycolytic enzymes in this process. We show that increased expression of enolase (Eno) in the sporulating mother cell decreases germination efficiency. Eno is phosphorylated by the conserved Ser/Thr protein kinase PrkC which decreases the catalytic activity of Eno. We found that phosphorylation also regulates Eno expression and localization, thereby controlling the overall spore germination process. Using MS analysis, we identified the sites of phosphorylation in Eno, and substitution(s) of selected phosphorylation sites helped establish the functional correlation between phosphorylation and Eno activity. We propose that PrkC-mediated regulation of Eno may help sporulating B. anthracis cells in adapting to nutrient deprivation. In summary, to the best of our knowledge, our study provides the first evidence that in sporulating B. anthracis, PrkC imprints phenotypic memory that facilitates the germination process.


Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Bacterianos/metabolismo , Bacillus anthracis/enzimologia , Proteínas de Bactérias/genética , Cinética , Magnésio/metabolismo , Mutagênese Sítio-Dirigida , Fosfopiruvato Hidratase/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
10.
J Bacteriol ; 201(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30642988

RESUMO

Bacterial alternative sigma factors are mostly regulated by a partner-switching mechanism. Regulation of the virulence-associated alternative sigma factor SigF of Mycobacterium tuberculosis has been an area of intrigue, with SigF having more predicted regulators than other sigma factors in this organism. Rv1364c is one such predicted regulator, the mechanism of which is confounded by the presence of both anti-sigma factor and anti-sigma factor antagonist functions in a single polypeptide. Using protein binding and phosphorylation assays, we demonstrate that the anti-sigma factor domain of Rv1364c mediates autophosphorylation of its antagonist domain and binds efficiently to SigF. Furthermore, we identified a direct role for the osmosensor serine/threonine kinase PknD in regulating the SigF-Rv1364c interaction, adding to the current understanding about the intersection of these discrete signaling networks. Phosphorylation of SigF also showed functional implications in its DNA binding ability, which may help in activation of the regulon. In M. tuberculosis, osmotic stress-dependent induction of espA, a SigF target involved in maintaining cell wall integrity, is curtailed upon overexpression of Rv1364c, showing its role as an anti-SigF factor. Overexpression of Rv1364c led to induction of another target, pks6, involved in lipid metabolism. This induction was, however, curtailed in the presence of osmotic stress conditions, suggesting modulation of SigF target gene expression via Rv1364c. These data provide evidence that Rv1364c acts an independent SigF regulator that is sensitive to the osmosensory signal, mediating the cross talk of PknD with the SigF regulon.IMPORTANCEMycobacterium tuberculosis, capable of latently infecting the host and causing aggressive tissue damage during active tuberculosis, is endowed with a complex regulatory capacity built of several sigma factors, protein kinases, and phosphatases. These proteins regulate expression of genes that allow the bacteria to adapt to various host-derived stresses, like nutrient starvation, acidic pH, and hypoxia. The cross talk between these systems is not well understood. SigF is one such regulator of gene expression that helps M. tuberculosis to adapt to stresses and imparts virulence. This work provides evidence for its inhibition by the multidomain regulator Rv1364c and activation by the kinase PknD. The coexistence of negative and positive regulators of SigF in pathogenic bacteria reveals an underlying requirement for tight control of virulence factor expression.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosforilação , Ligação Proteica
11.
Environ Microbiol ; 20(1): 402-419, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29322681

RESUMO

Tuberculosis (TB) is primarily associated with decline in immune health status. As gut microbiome (GM) is implicated in the regulation of host immunity and metabolism, here we investigate GM alteration in TB patients by 16S rRNA gene and whole-genome shotgun sequencing. The study group constituted of patients with pulmonary TB and their healthy household contacts as controls (HCs). Significant alteration of microbial taxonomic and functional capacity was observed in patients with active TB as compared to the HCs. We observed that Prevotella and Bifidobacterium abundance were associated with HCs, whereas butyrate and propionate-producing bacteria like Faecalibacterium, Roseburia, Eubacterium and Phascolarctobacterium were significantly enriched in TB patients. Functional analysis showed reduced biosynthesis of vitamins and amino acids in favour of enriched metabolism of butyrate and propionate in TB subjects. The TB subjects were also investigated during the course of treatment, to analyse the variation of GM. Although perturbation in microbial composition was still evident after a month's administration of anti-TB drugs, significant changes were observed in metagenome gene pool that pointed towards recovery in functional capacity. Therefore, the findings from this pilot study suggest that microbial dysbiosis may contribute to pathophysiology of TB by enhancing the anti-inflammatory milieu in the host.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Microbioma Gastrointestinal , Propionatos/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Adulto , Bactérias/classificação , Disbiose , Feminino , Humanos , Masculino , Metagenoma , Pessoa de Meia-Idade , Projetos Piloto , RNA Ribossômico 16S , Tuberculose Pulmonar/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...