Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(6): 1063-1068, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38748611

RESUMO

Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.


Assuntos
Bortezomib , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Bortezomib/farmacologia , Bortezomib/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Humanos
3.
Mol Cell ; 84(1): 70-79, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38103560

RESUMO

Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.


Assuntos
Dano ao DNA , Replicação do DNA , Humanos , Reparo do DNA , DNA/genética , Genoma , Instabilidade Genômica , Transcrição Gênica
4.
Mol Cell ; 83(20): 3669-3678.e7, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816354

RESUMO

UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.


Assuntos
Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/genética , Reparo do DNA/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Dano ao DNA/genética , DNA/genética , Raios Ultravioleta , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
5.
Anal Chem ; 95(33): 12209-12215, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552619

RESUMO

Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.


Assuntos
Espectrometria de Massas , Complexo de Endopeptidases do Proteassoma/química , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Modelos Moleculares , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/química
6.
EMBO J ; 42(18): e113190, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37492888

RESUMO

DNA single-strand breaks (SSBs) disrupt DNA replication and induce chromosome breakage. However, whether SSBs induce chromosome breakage when present behind replication forks or ahead of replication forks is unclear. To address this question, we exploited an exquisite sensitivity of SSB repair-defective human cells lacking PARP activity or XRCC1 to the thymidine analogue 5-chloro-2'-deoxyuridine (CldU). We show that incubation with CldU in these cells results in chromosome breakage, sister chromatid exchange, and cytotoxicity by a mechanism that depends on the S phase activity of uracil DNA glycosylase (UNG). Importantly, we show that CldU incorporation in one cell cycle is cytotoxic only during the following cell cycle, when it is present in template DNA. In agreement with this, while UNG induces SSBs both in nascent strands behind replication forks and in template strands ahead of replication forks, only the latter trigger fork collapse and chromosome breakage. Finally, we show that BRCA-defective cells are hypersensitive to CldU, either alone and/or in combination with PARP inhibitor, suggesting that CldU may have clinical utility.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quebra Cromossômica , Reparo do DNA , Replicação do DNA , DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
7.
J Phys Chem Lett ; 14(21): 5014-5017, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224454

RESUMO

Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteólise
8.
Phys Chem Chem Phys ; 24(35): 20638-20673, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36047908

RESUMO

Hydrogen evolution from water splitting is considered to be an important renewable clean energy source and alternative to fossil fuels for future energy sustainability. Photocatalytic and electrocatalytic water splitting is considered to be an effective method for the sustainable production of clean energy, H2. This perspective especially emphasizes research advances in the solution-assisted synthesis of transition metal chalcogenides for both photo and electrocatalytic hydrogen evolution applications. Transition metal chalcogenides (CdS, MoS2, WS2, TiS2, TaS2, ReS2, MoSe2, and WSe2) have received intensified research interest over the past two decades on account of their unique properties and great potential across a wide range of applications. The photocatalytic activity of transition metal chalcogenides can further be improved by elemental doping, heterojunction formation with noble metals (Au, Pt, etc.), non-chalcogenides (MoS2, In2S3, NiS1-X), morphological tuning, through various solution-assisted synthesis processes, including liquid-phase exfoliation, heat-up, hot-injection methods, hydrothermal/solvothermal routes and template-mediated synthesis processes. In this review we will discuss recent developments in transition metal chalcogenides (TMCs), the role of TMCs for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution. We have included a brief discussion on the effect of surface hydrogen binding energy and Gibbs free energy change for HER in electrocatalytic hydrogen evolution.

9.
Bioinformatics ; 38(20): 4790-4796, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040145

RESUMO

MOTIVATION: The medical data are complex in nature as terms that appear in records usually appear in different contexts. Through this article, we investigate various bio model's embeddings (BioBERT, BioELECTRA and PubMedBERT) on their understanding of 'negation and speculation context' wherein we found that these models were unable to differentiate 'negated context' versus 'non-negated context'. To measure the understanding of models, we used cosine similarity scores of negated sentence embeddings versus non-negated sentence embeddings pairs. For improving these models, we introduce a generic super tuning approach to enhance the embeddings on 'negation and speculation context' by utilizing a synthesized dataset. RESULTS: After super-tuning the models, we can see that the model's embeddings are now understanding negative and speculative contexts much better. Furthermore, we fine-tuned the super-tuned models on various tasks and we found that the model has outperformed the previous models and achieved state-of-the-art on negation, speculation cue and scope detection tasks on BioScope abstracts and Sherlock dataset. We also confirmed that our approach had a very minimal trade-off in the performance of the model in other tasks like natural language inference after super-tuning. AVAILABILITY AND IMPLEMENTATION: The source code, data and the models are available at: https://github.com/comprehend/engg-ai-research/tree/uncertainty-super-tuning.


Assuntos
Processamento de Linguagem Natural , Software , Idioma
10.
Nat Struct Mol Biol ; 29(4): 329-338, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332322

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is implicated in the detection and processing of unligated Okazaki fragments and other DNA replication intermediates, highlighting such structures as potential sources of genome breakage induced by PARP inhibition. Here, we show that PARP1 activity is greatly elevated in chicken and human S phase cells in which FEN1 nuclease is genetically deleted and is highest behind DNA replication forks. PARP inhibitor reduces the integrity of nascent DNA strands in both wild-type chicken and human cells during DNA replication, and does so in FEN1-/- cells to an even greater extent that can be detected as postreplicative single-strand nicks or gaps. Collectively, these data show that PARP inhibitors impede the maturation of nascent DNA strands during DNA replication, and implicate unligated Okazaki fragments and other nascent strand discontinuities in the cytotoxicity of these compounds.


Assuntos
Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , DNA/genética , Dano ao DNA , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
11.
mBio ; 13(1): e0295321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089078

RESUMO

Studies of viral replication have provided critical insights into host processes, including protein trafficking and turnover. Mouse mammary tumor virus (MMTV) is a betaretrovirus that encodes a functional 98-amino-acid signal peptide (SP). MMTV SP is generated from both Rem and envelope precursor proteins by signal peptidase cleavage in the endoplasmic reticulum (ER) membrane. We previously showed that SP functions as a human immunodeficiency virus type 1 (HIV-1) Rev-like protein that is dependent on the AAA ATPase valosin-containing protein (VCP)/p97 to subvert ER-associated degradation (ERAD). SP contains a nuclear localization sequence (NLS)/nucleolar localization sequence (NoLS) within the N-terminal 45 amino acids. To directly determine the SP regions needed for membrane extraction and trafficking, we developed a quantitative retrotranslocation assay with biotin acceptor peptide (BAP)-tagged SP proteins. Use of alanine substitution mutants of BAP-tagged MMTV SP in retrotranslocation assays revealed that mutation of amino acids 57 and 58 (M57-58) interfered with ER membrane extraction, whereas adjacent mutations did not. The M57-58 mutant also showed reduced interaction with VCP/p97 in coimmunoprecipitation experiments. Using transfection and reporter assays to measure activity of BAP-tagged proteins, both M57-58 and an adjacent mutant (M59-61) were functionally defective compared to wild-type SP. Confocal microscopy revealed defects in SP nuclear trafficking and abnormal localization of both M57-58 and M59-61. Furthermore, purified glutathione S-transferase (GST)-tagged M57-58 and M59-61 demonstrated reduced ability to oligomerize compared to tagged wild-type SP. These experiments suggest that SP amino acids 57 and 58 are critical for VCP/p97 interaction and retrotranslocation, whereas residues 57 to 61 are critical for oligomerization and nuclear trafficking independent of the NLS/NoLS. Our results emphasize the complex host interactions with long signal peptides. IMPORTANCE Endoplasmic reticulum-associated degradation (ERAD) is a form of cellular protein quality control that is manipulated by viruses, including the betaretrovirus, mouse mammary tumor virus (MMTV). MMTV-encoded signal peptide (SP) has been shown to interact with an essential ERAD factor, VCP/p97 ATPase, to mediate its extraction from the ER membrane, also known as retrotranslocation, for RNA binding and nuclear function. In this paper, we developed a quantitative retrotranslocation assay that identified an SP substitution mutant, which is defective for VCP interaction as well as nuclear trafficking, oligomer formation, and function. An adjacent SP mutant was competent for retrotranslocation and VCP interaction but shared the other defects. Our results revealed the requirement for VCP during SP trafficking and the complex cellular pathways used by long signal peptides.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Sinais Direcionadores de Proteínas , Animais , Camundongos , Humanos , Proteína com Valosina/genética , Sinais Direcionadores de Proteínas/genética , Núcleo Celular/metabolismo , Vírus do Tumor Mamário do Camundongo/genética , Aminoácidos/metabolismo , Proteínas de Ciclo Celular/genética
12.
Protein Sci ; 31(3): 556-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878680

RESUMO

The proteasome is a powerful intracellular protease that can degrade effectively any protein, self or foreign, for regulation, quality control, or immune response. Proteins are targeted for degradation by localizing them to the proteasome, typically by ubiquitin tags. At the same time, the proteasome is built from ~33 subunits, and their assembly into the complex and activity are tuned by post-translational modifications on long disordered regions on the subunits. Molecular modeling and biochemical experiments show that some of the disordered regions of proteasomal subunits can access the substrate recognition sites. All disordered regions tested, independent of location, are constructed from amino acid sequences that escape recognition. Replacing a disordered region with a sequence that is recognized by the proteasome leads to self-degradation and, in the case of an essential subunit, cell death.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteólise , Ubiquitina/metabolismo
13.
Nat Cell Biol ; 23(12): 1287-1298, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811483

RESUMO

Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transcrição Gênica/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Animais , Linhagem Celular Tumoral , DNA/genética , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Knockout , Estresse Oxidativo/genética , Poli(ADP-Ribose) Polimerase-1/genética , Ubiquitinação/fisiologia , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
14.
Chem Commun (Camb) ; 57(69): 8660-8663, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34373883

RESUMO

A highly efficient hybrid ZnCdS-rGO/MoS2 heterostructure is successfully synthesized through a hot injection method and control loading of rGO/MoS2. The synergism provides an unprecedently high H2-generation rate of 193.4 mmol H2 g-1 h-1 from water under full arc solar radiation and MeOH production (5.26 mmol g-1 h-1, AQY of 14.6% at λ = 420 ± 20 nm) from CO2 reduction.

15.
Nat Chem Biol ; 15(3): 210-212, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770910
16.
RNA Biol ; 16(2): 185-195, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30672374

RESUMO

Snu114, a component of the U5 snRNP, plays a key role in activation of the spliceosome. It controls the action of Brr2, an RNA-stimulated ATPase/RNA helicase that disrupts U4/U6 snRNA base-pairing prior to formation of the spliceosome's catalytic centre. Snu114 has a highly conserved domain structure that resembles that of the GTPase EF-2/EF-G in the ribosome. It has been suggested that the regulatory function of Snu114 in activation of the spliceosome is mediated by its C-terminal region, however, there has been only limited characterisation of the interactions of the C-terminal domains. We show a direct interaction between protein phosphatase PP1 and Snu114 domain 'IVa' and identify sequence 'YGVQYK' as a PP1 binding motif. Interestingly, this motif is also required for Cwc21 binding. We provide evidence for mutually exclusive interaction of Cwc21 and PP1 with Snu114 and show that the affinity of Cwc21 and PP1 for Snu114 is influenced by the different nucleotide-bound states of Snu114. Moreover, we identify a novel mutation in domain IVa that, while not affecting vegetative growth of yeast cells, causes a defect in splicing transcripts of the meiotic genes, SPO22, AMA1 and MER2, thereby inhibiting an early stage of meiosis.


Assuntos
Regulação da Expressão Gênica , Miose/genética , Mutagênese , Domínios e Motivos de Interação entre Proteínas/genética , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo Celular/genética , Epistasia Genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Miose/metabolismo , Mutação , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química
17.
Methods Mol Biol ; 1844: 321-341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242719

RESUMO

We developed a degradation assay based on fluorescent protein substrates that are efficiently recognized, unfolded, translocated, and hydrolyzed by the proteasome. The substrates consist of three components: a proteasome-binding tag, a folded domain, and an initiation region. All the components of the model substrate can be changed to modulate degradation, and the assay can be performed in parallel in 384-well plates. These properties allow the assay to be used to explore a wide range of experimental conditions and to screen proteasome modulators.


Assuntos
Bioensaio , Complexo de Endopeptidases do Proteassoma/metabolismo , Bioensaio/métodos , Cromatografia de Afinidade , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Ligação Proteica , Conformação Proteica , Proteólise , Especificidade por Substrato , Ubiquitina/metabolismo
18.
J Biol Chem ; 291(28): 14526-39, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226608

RESUMO

The proteasome has pronounced preferences for the amino acid sequence of its substrates at the site where it initiates degradation. Here, we report that modulating these sequences can tune the steady-state abundance of proteins over 2 orders of magnitude in cells. This is the same dynamic range as seen for inducing ubiquitination through a classic N-end rule degron. The stability and abundance of His3 constructs dictated by the initiation site affect survival of yeast cells and show that variation in proteasomal initiation can affect fitness. The proteasome's sequence preferences are linked directly to the affinity of the initiation sites to their receptor on the proteasome and are conserved between Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human cells. These findings establish that the sequence composition of unstructured initiation sites influences protein abundance in vivo in an evolutionarily conserved manner and can affect phenotype and fitness.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Células HEK293 , Humanos , Proteólise , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Especificidade por Substrato
19.
Nucleic Acids Res ; 43(6): 3309-17, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25740649

RESUMO

Pre-mRNA splicing involves two transesterification steps catalyzed by the spliceosome. How RNA substrates are positioned in each step and the molecular rearrangements involved, remain obscure. Here, we show that mutations in PRP16, PRP8, SNU114 and the U5 snRNA that affect this process interact genetically with CWC21, that encodes the yeast orthologue of the human SR protein, SRm300/SRRM2. Our microarray analysis shows changes in 3' splice site selection at elevated temperature in a subset of introns in cwc21Δ cells. Considering all the available data, we propose a role for Cwc21p positioning the 3' splice site at the transition to the second step conformation of the spliceosome, mediated through its interactions with the U5 snRNP. This suggests a mechanism whereby SRm300/SRRM2, might influence splice site selection in human cells.


Assuntos
Proteínas de Transporte/metabolismo , Sítios de Splice de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Deleção de Genes , Genes Fúngicos , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/química , Spliceossomos/genética
20.
Nucleic Acids Res ; 42(22): 13897-910, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25428373

RESUMO

RNA helicases are essential for virtually all cellular processes, however, their regulation is poorly understood. The activities of eight RNA helicases are required for pre-mRNA splicing. Amongst these, Brr2p is unusual in having two helicase modules, of which only the amino-terminal helicase domain appears to be catalytically active. Using genetic and biochemical approaches, we investigated interaction of the carboxy-terminal helicase module, in particular the carboxy-terminal Sec63-2 domain, with the splicing RNA helicase Prp16p. Combining mutations in BRR2 and PRP16 suppresses or enhances physical interaction and growth defects in an allele-specific manner, signifying functional interactions. Notably, we show that Brr2p Sec63-2 domain can modulate the ATPase activity of Prp16p in vitro by interfering with its ability to bind RNA. We therefore propose that the carboxy-terminal helicase module of Brr2p acquired a regulatory function that allows Brr2p to modulate the ATPase activity of Prp16p in the spliceosome by controlling access to its RNA substrate/cofactor.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Alelos , RNA Helicases DEAD-box/metabolismo , Temperatura Alta , Íntrons , Mutação , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética , Splicing de RNA , Fatores de Processamento de RNA , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...