Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4542, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806525

RESUMO

The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.


Assuntos
Apolipoproteínas E , Vírus da Febre Hemorrágica da Crimeia-Congo , Receptores de LDL , Internalização do Vírus , Humanos , Receptores de LDL/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Animais , Células HEK293 , Chlorocebus aethiops , Febre Hemorrágica da Crimeia/virologia , Febre Hemorrágica da Crimeia/metabolismo , Vírion/metabolismo , Células Vero
2.
Emerg Microbes Infect ; 13(1): 2348508, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38661085

RESUMO

The Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus that causes high mortality in humans. This enveloped virus harbors two surface glycoproteins (GP), Gn and Gc, that are released by processing of a glycoprotein precursor complex whose maturation takes place in the ER and is completed through the secretion pathway. Here, we characterized the trafficking network exploited by CCHFV GPs during viral assembly, envelopment, and/or egress. We identified membrane trafficking motifs in the cytoplasmic domains (CD) of CCHFV GPs and addressed how they impact these late stages of the viral life cycle using infection and biochemical assays, and confocal microscopy in virus-producing cells. We found that several of the identified CD motifs modulate GP transport through the retrograde trafficking network, impacting envelopment and secretion of infectious particles. Finally, we identified PACS-2 as a crucial host factor contributing to CCHFV GPs trafficking required for assembly and release of viral particles.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Transporte Proteico , Montagem de Vírus , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Domínios Proteicos , Motivos de Aminoácidos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Chlorocebus aethiops , Células HEK293 , Células Vero
3.
Front Microbiol ; 13: 875840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722331

RESUMO

SARS-CoV-2 and its variants, such as the Omicron continue to threaten public health. The virus recognizes the host cell by attaching its Spike (S) receptor-binding domain (RBD) to the host receptor, ACE2. Therefore, RBD is a primary target for neutralizing antibodies and vaccines. Here, we report the isolation and biological and structural characterization of a single-chain antibody (nanobody) from RBD-immunized alpaca. The nanobody, named DL28, binds to RBD tightly with a K D of 1.56 nM and neutralizes the original SARS-CoV-2 strain with an IC50 of 0.41 µg mL-1. Neutralization assays with a panel of variants of concern (VOCs) reveal its wide-spectrum activity with IC50 values ranging from 0.35 to 1.66 µg mL-1 for the Alpha/Beta/Gamma/Delta and an IC50 of 0.66 µg mL-1 for the currently prevalent Omicron. Competition binding assays show that DL28 blocks ACE2-binding. However, structural characterizations and mutagenesis suggest that unlike most antibodies, the blockage by DL28 does not involve direct competition or steric hindrance. Rather, DL28 may use a "conformation competition" mechanism where it excludes ACE2 by keeping an RBD loop in a conformation incompatible with ACE2-binding.

4.
Int J Biol Macromol ; 209(Pt A): 1379-1388, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460753

RESUMO

SARS-CoV-2 engages with human cells through the binding of its Spike receptor-binding domain (S-RBD) to the receptor ACE2. Molecular blocking of this engagement represents a proven strategy to treat COVID-19. Here, we report a single-chain antibody (nanobody, DL4) isolated from immunized alpaca with picomolar affinity to RBD. DL4 neutralizes SARS-CoV-2 pseudoviruses with an IC50 of 0.101 µg mL-1 (6.2 nM). A crystal structure of the DL4-RBD complex at 1.75-Å resolution unveils the interaction detail and reveals a direct competition mechanism for DL4's ACE2-blocking and hence neutralizing activity. The structural information allows us to rationally design a mutant with higher potency. Our work adds diversity of neutralizing nanobodies against SARS-CoV-2 and should encourage protein engineering to improve antibody affinities in general.


Assuntos
SARS-CoV-2 , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Ligação Proteica , Engenharia de Proteínas , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...